scispace - formally typeset
Search or ask a question
Institution

Université de Sherbrooke

EducationSherbrooke, Quebec, Canada
About: Université de Sherbrooke is a education organization based out in Sherbrooke, Quebec, Canada. It is known for research contribution in the topics: Population & Receptor. The organization has 14922 authors who have published 28783 publications receiving 792511 citations. The organization is also known as: Universite de Sherbrooke & Sherbrooke University.


Papers
More filters
Journal ArticleDOI
TL;DR: How older people are misrepresented and undervalued in the current public discourse surrounding the COVID-19 pandemic is discussed, including issues in documenting the deaths of older adults, the lack of preparation for such a crisis in long-term care homes, and how some ‘protective’ policies can be considered patronising.
Abstract: The goal of this commentary is to highlight the ageism that has emerged during the COVID-19 pandemic. Over 20 international researchers in the field of ageing have contributed to this document. This commentary discusses how older people are misrepresented and undervalued in the current public discourse surrounding the pandemic. It points to issues in documenting the deaths of older adults, the lack of preparation for such a crisis in long-term care homes, how some 'protective' policies can be considered patronising and how the initial perception of the public was that the virus was really an older adult problem. This commentary also calls attention to important intergenerational solidarity that has occurred during this crisis to ensure support and social-inclusion of older adults, even at a distance. Our hope is that with this commentary we can contribute to the discourse on older adults during this pandemic and diminish the ageist attitudes that have circulated.

224 citations

Journal ArticleDOI
TL;DR: Two different measures which quantify the level of synchronization of coupled continuous variable quantum systems are introduced and they allow us to extend to the quantum domain the notions of complete and phase synchronization.
Abstract: We introduce and characterize two different measures which quantify the level of synchronization of coupled continuous variable quantum systems. The two measures allow us to extend to the quantum domain the notions of complete and phase synchronization. The Heisenberg principle sets a universal bound to complete synchronization. The measure of phase synchronization is, in principle, unbounded; however, in the absence of quantum resources (e.g., squeezing) the synchronization level is bounded below a certain threshold. We elucidate some interesting connections between entanglement and synchronization and, finally, discuss an application based on quantum optomechanical systems.

224 citations

Journal ArticleDOI
TL;DR: Versatile and complex motions enabled by the enhanced photocontrol of actuation are demonstrated, including plastic "athletes" that can execute light-controlled push-ups or sit-ups, and a light-driven caterpillar-inspired walker that can crawl forward on a ratcheted substrate at a speed of about 13 mm min-1.
Abstract: A near-infrared-light (NIR)- and UV-light-responsive polymer nanocomposite is synthesized by doping polymer-grafted gold nanorods into azobenzene liquid-crystalline dynamic networks (AuNR-ALCNs). The effects of the two different photoresponsive mechanisms, i.e., the photochemical reaction of azobenzene and the photothermal effect from the surface plasmon resonance of the AuNRs, are investigated by monitoring both the NIR- and UV-light-induced contraction forces of the oriented AuNR-ALCNs. By taking advantage of the material's easy processability, bilayer-structured actuators can be fabricated to display photocontrollable bending/unbending directions, as well as localized actuations through programmed alignment of azobenzene mesogens in selected regions. Versatile and complex motions enabled by the enhanced photocontrol of actuation are demonstrated, including plastic "athletes" that can execute light-controlled push-ups or sit-ups, and a light-driven caterpillar-inspired walker that can crawl forward on a ratcheted substrate at a speed of about 13 mm min-1 . Moreover, the photomechanical effects arising from the two types of light-triggered molecular motion, i.e., the trans-cis photoisomerization and a liquid-crystalline-isotropic phase transition of the azobenzene mesogens, are added up to design a polymer "crane" that is capable of performing light-controlled, robot-like, concerted macroscopic motions including grasping, lifting up, lowering down, and releasing an object.

223 citations

Journal ArticleDOI
TL;DR: It is demonstrated in vivo and in vitro that RyhB directly pairs at the 5′‐untranslated region (5′‐UTR) of the shiA mRNA to disrupt an intrinsic inhibitory structure that sequesters the ribosome‐binding site (Shine‐Dalgarno).
Abstract: RyhB is a small RNA (sRNA) that downregulates about 20 genes involved in iron metabolism. It is expressed under low iron conditions and pairs with specific mRNAs to trigger their rapid degradation by the RNA degradosome. In contrast to this, another study has suggested that RyhB also activates several genes by increasing their mRNA level. Among these activated genes is shiA, which encodes a permease of shikimate, an aromatic compound participating in the biosynthesis of siderophores. Here, we demonstrate in vivo and in vitro that RyhB directly pairs at the 5'-untranslated region (5'-UTR) of the shiA mRNA to disrupt an intrinsic inhibitory structure that sequesters the ribosome-binding site (Shine-Dalgarno) and the first translation codon. This is the first demonstration of direct gene activation by RyhB, which has been exclusively described in degradation of mRNAs. Our physiological results indicate that the transported compound of the ShiA permease, shikimate, is important under conditions of RyhB expression, that is, iron starvation. This is demonstrated by growth assays in which shikimate or the siderophore enterochelin correct the growth defect observed for a ryhB mutant in iron-limited media.

223 citations

Journal ArticleDOI
TL;DR: The Concise Guide to PHARMACOLOGY 2021/22 as mentioned in this paper provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands.
Abstract: The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.

223 citations


Authors

Showing all 15051 results

NameH-indexPapersCitations
Masashi Yanagisawa13052483631
Joseph V. Bonventre12659661009
Jeffrey L. Benovic9926430041
Alessio Fasano9647834580
Graham Pawelec8957227373
Simon C. Robson8855229808
Paul B. Corkum8857637200
Mario Leclerc8837435961
Stephen M. Collins8632025646
Ed Harlow8619061008
William D. Fraser8582730155
Jean Cadet8337224000
Vincent Giguère8222727481
Robert Gurny8139628391
Jean-Michel Gaillard8141026780
Network Information
Related Institutions (5)
McGill University
162.5K papers, 6.9M citations

95% related

University of British Columbia
209.6K papers, 9.2M citations

95% related

University of Toronto
294.9K papers, 13.5M citations

95% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

University of California, Irvine
113.6K papers, 5.5M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202384
2022189
20211,858
20201,805
20191,625
20181,543