scispace - formally typeset
Search or ask a question
Institution

University of Adelaide

EducationAdelaide, South Australia, Australia
About: University of Adelaide is a education organization based out in Adelaide, South Australia, Australia. It is known for research contribution in the topics: Population & Pregnancy. The organization has 27251 authors who have published 79167 publications receiving 2671128 citations. The organization is also known as: The University of Adelaide & Adelaide University.


Papers
More filters
Journal ArticleDOI
TL;DR: The genome-wide association study for open-angle glaucoma (OAG) blindness using a discovery cohort of 590 individuals with severe visual field loss and 3,956 controls shows retinal expression of genes at both loci at TMCO1 and CDKN2B-AS1 in human ocular tissues.
Abstract: We report a genome-wide association study for open-angle glaucoma (OAG) blindness using a discovery cohort of 590 individuals with severe visual field loss (cases) and 3,956 controls. We identified associated loci at TMCO1 (rs4656461[G] odds ratio (OR) = 1.68, P = 6.1 × 10(-10)) and CDKN2B-AS1 (rs4977756[A] OR = 1.50, P = 4.7 × 10(-9)). We replicated these associations in an independent cohort of cases with advanced OAG (rs4656461 P = 0.010; rs4977756 P = 0.042) and two additional cohorts of less severe OAG (rs4656461 combined discovery and replication P = 6.00 × 10(-14), OR = 1.51, 95% CI 1.35-1.68; rs4977756 combined P = 1.35 × 10(-14), OR = 1.39, 95% CI 1.28-1.51). We show retinal expression of genes at both loci in human ocular tissues. We also show that CDKN2A and CDKN2B are upregulated in the retina of a rat model of glaucoma.

354 citations

Proceedings ArticleDOI
14 Jun 2020
TL;DR: Zhang et al. as discussed by the authors adopt the Earth Mover's distance (EMD) as a metric to compute a structural distance between dense image representations to determine image relevance, which is used to represent the image distance for classification.
Abstract: In this paper, we address the few-shot classification task from a new perspective of optimal matching between image regions. We adopt the Earth Mover's Distance (EMD) as a metric to compute a structural distance between dense image representations to determine image relevance. The EMD generates the optimal matching flows between structural elements that have the minimum matching cost, which is used to represent the image distance for classification. To generate the important weights of elements in the EMD formulation, we design a cross-reference mechanism, which can effectively minimize the impact caused by the cluttered background and large intra-class appearance variations. To handle k-shot classification, we propose to learn a structured fully connected layer that can directly classify dense image representations with the EMD. Based on the implicit function theorem, the EMD can be inserted as a layer into the network for end-to-end training. We conduct comprehensive experiments to validate our algorithm and we set new state-of-the-art performance on four popular few-shot classification benchmarks, namely miniImageNet, tieredImageNet, Fewshot-CIFAR100 (FC100) and Caltech-UCSD Birds-200-2011 (CUB).

354 citations

Journal ArticleDOI
TL;DR: It is not only the intensity of light at different depths, but also its distribution in space, which has been a major force in the evolution of deep‐sea vision, is reviewed in support of the following conclusion.
Abstract: The deep sea is the largest habitat on earth. Its three great faunal environments--the twilight mesopelagic zone, the dark bathypelagic zone and the vast flat expanses of the benthic habitat--are home to a rich fauna of vertebrates and invertebrates. In the mesopelagic zone (150-1000 m), the down-welling daylight creates an extended scene that becomes increasingly dimmer and bluer with depth. The available daylight also originates increasingly from vertically above, and bioluminescent point-source flashes, well contrasted against the dim background daylight, become increasingly visible. In the bathypelagic zone below 1000 m no daylight remains, and the scene becomes entirely dominated by point-like bioluminescence. This changing nature of visual scenes with depth--from extended source to point source--has had a profound effect on the designs of deep-sea eyes, both optically and neurally, a fact that until recently was not fully appreciated. Recent measurements of the sensitivity and spatial resolution of deep-sea eyes--particularly from the camera eyes of fishes and cephalopods and the compound eyes of crustaceans--reveal that ocular designs are well matched to the nature of the visual scene at any given depth. This match between eye design and visual scene is the subject of this review. The greatest variation in eye design is found in the mesopelagic zone, where dim down-welling daylight and bio-luminescent point sources may be visible simultaneously. Some mesopelagic eyes rely on spatial and temporal summation to increase sensitivity to a dim extended scene, while others sacrifice this sensitivity to localise pinpoints of bright bioluminescence. Yet other eyes have retinal regions separately specialised for each type of light. In the bathypelagic zone, eyes generally get smaller and therefore less sensitive to point sources with increasing depth. In fishes, this insensitivity, combined with surprisingly high spatial resolution, is very well adapted to the detection and localisation of point-source bioluminescence at ecologically meaningful distances. At all depths, the eyes of animals active on and over the nutrient-rich sea floor are generally larger than the eyes of pelagic species. In fishes, the retinal ganglion cells are also frequently arranged in a horizontal visual streak, an adaptation for viewing the wide flat horizon of the sea floor, and all animals living there. These and many other aspects of light and vision in the deep sea are reviewed in support of the following conclusion: it is not only the intensity of light at different depths, but also its distribution in space, which has been a major force in the evolution of deep-sea vision.

354 citations

Journal ArticleDOI
TL;DR: Reducing radon in all homes exceeding the U. S. Environmental Protection Agency's recommended action level may reduce lung cancer deaths about 2%-4%.
Abstract: Background : Radioactive radon is an inert gas that can migrate from soils and rocks and accumulate in enclosed areas, such as homes and underground mines. Studies of miners show that exposure to radon decay products causes lung cancer. Consequently, it is of public health interest to estimate accurately the consequences of daily, low-level exposure in homes to this known carcinogen. Epidemiologic studies of residential radon exposure are burdened by an inability to estimate exposure accurately, low total exposure, and subsequent small excess risks. As a result, the studies have been inconclusive to date. Estimates of the hazard posed by residential radon have been based on analyses of data on miners, with recent estimates based on a pooling of four occupational cohort studies of miners, including 360 lung cancer deaths. Purpose : To more fully describe the lung cancer risk in radon-exposed miners, we pooled original data from 11 studies of radon-exposed underground miners, conducted a comprehensive analysis, and developed models for estimating radon-associated lung cancer risk. Methods : We pooled original data from 11 cohort studies of radon-exposed underground miners, including 65 000 men and more than 2700 lung cancer deaths, and fit various relative risk (RR) regression models. Results : The RR relationship for cumulative radon progeny exposure was consistently linear in the range of miner exposures, suggesting that exposures at lower levels, such as in homes, would carry some risk. The exposure-response trend for never-smokers was threefold the trend for smokers, indicating a greater RR for exposure in never-smokers. The RR from exposure diminished with time since the exposure occurred. For equal total exposure, exposures of long duration (and low rate) were more harmful than exposures of short duration (and high rate). Conclusions: In the miners, about 40% of all lung cancer deaths may be due to radon progeny exposure, 70% of lung cancer deaths in never-smokers, and 39% of lung cancer deaths in smokers. In the United States, 10% of all lung cancer deaths might be due to indoor radon exposure, 11% of lung cancer deaths in smokers, and 30% of lung cancer deaths in never-smokers. This risk model estimates that reducing radon in all homes exceeding the U. S. Environmental Protection Agency's recommended action level may reduce lung cancer deaths about 2%-4%. These estimates should be interpreted with caution, because concomitant exposures of miners to agents such as arsenic or diesel exhaust may modify the radon effect and, when considered together with other differences between homes and mines, might reduce the generalizability of findings in miners. [J Natl Cancer Inst 87 :817-827, 1995]

353 citations

Journal ArticleDOI
TL;DR: There is evidence that mediators of the association between parental education and children’s growth do not function in isolation from each other, but are interlinked, and complexity is needed because, in the real world, mediators rarely act alone.

353 citations


Authors

Showing all 27579 results

NameH-indexPapersCitations
Martin White1962038232387
Nicholas G. Martin1921770161952
David W. Johnson1602714140778
Nicholas J. Talley158157190197
Mark E. Cooper1581463124887
Xiang Zhang1541733117576
John E. Morley154137797021
Howard I. Scher151944101737
Christopher M. Dobson1501008105475
A. Artamonov1501858119791
Timothy P. Hughes14583191357
Christopher Hill1441562128098
Shi-Zhang Qiao14252380888
Paul Jackson141137293464
H. A. Neal1411903115480
Network Information
Related Institutions (5)
University of Melbourne
174.8K papers, 6.3M citations

97% related

University of British Columbia
209.6K papers, 9.2M citations

92% related

McGill University
162.5K papers, 6.9M citations

92% related

University of Edinburgh
151.6K papers, 6.6M citations

92% related

Imperial College London
209.1K papers, 9.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022597
20215,501
20205,342
20194,803
20184,443