scispace - formally typeset
Search or ask a question
Institution

University of Adelaide

EducationAdelaide, South Australia, Australia
About: University of Adelaide is a education organization based out in Adelaide, South Australia, Australia. It is known for research contribution in the topics: Population & Pregnancy. The organization has 27251 authors who have published 79167 publications receiving 2671128 citations. The organization is also known as: The University of Adelaide & Adelaide University.


Papers
More filters
Journal ArticleDOI
12 Mar 2015-Cell
TL;DR: It is shown that hundreds of circRNAs are regulated during human epithelial-mesenchymal transition (EMT) and that the production of over one-third of abundant circ RNAs is dynamically regulated by the alternative splicing factor, Quaking (QKI), which itself is regulated during EMT.

1,531 citations

Proceedings ArticleDOI
01 Jun 2019
TL;DR: In this paper, a generalized IoU (GIoU) metric is proposed for non-overlapping bounding boxes, which can be directly used as a regression loss.
Abstract: Intersection over Union (IoU) is the most popular evaluation metric used in the object detection benchmarks. However, there is a gap between optimizing the commonly used distance losses for regressing the parameters of a bounding box and maximizing this metric value. The optimal objective for a metric is the metric itself. In the case of axis-aligned 2D bounding boxes, it can be shown that IoU can be directly used as a regression loss. However, IoU has a plateau making it infeasible to optimize in the case of non-overlapping bounding boxes. In this paper, we address the this weakness by introducing a generalized version of IoU as both a new loss and a new metric. By incorporating this generalized IoU ( GIoU) as a loss into the state-of-the art object detection frameworks, we show a consistent improvement on their performance using both the standard, IoU based, and new, GIoU based, performance measures on popular object detection benchmarks such as PASCAL VOC and MS COCO.

1,527 citations

Journal ArticleDOI
TL;DR: In this article, the potential applications of nanostructured and nanoporous graphitic carbon nitrides (g-C3N4) materials have been developed for a wide range of new applications.
Abstract: Graphitic carbon nitrides (g-C3N4) are becoming increasingly significant due to the theoretical prediction of their unusual properties and promising applications ranging from photocatalysis, heterogeneous catalysis, to fuel cells. Recently, a variety of nanostructured and nanoporous g-C3N4 materials have been developed for a wide range of new applications. This feature article gives, at first, an overview on the synthesis of g-C3N4 nanomaterials with controllable structure and morphology, and secondly, presents and categorizes applications of g-C3N4 as multifunctional metal-free catalysts for environmental protection, energy conversion and storage. A special emphasis is placed on the potential applications of nanostructured g-C3N4 in the areas of artificial photocatalysis for hydrogen production, oxygen reduction reaction (ORR) for fuel cells, and metal-free heterogeneous catalysis. Finally, this perspective highlights crucial issues that should be addressed in the future in the aforementioned exciting research areas.

1,507 citations

Journal ArticleDOI
01 Feb 2002-Science
TL;DR: Full induction of HIF-1α and -2α relies on the abrogation of both Pro and Asn hydroxylation, which during normoxia occur at the degradation and COOH-terminal transactivation domains, respectively.
Abstract: The hypoxia-inducible factors (HIFs) 1α and 2α are key mammalian transcription factors that exhibit dramatic increases in both protein stability and intrinsic transcriptional potency during low-oxygen stress. This increased stability is due to the absence of proline hydroxylation, which in normoxia promotes binding of HIF to the von Hippel–Lindau (VHL tumor suppressor) ubiquitin ligase. We now show that hypoxic induction of the COOH-terminal transactivation domain (CAD) of HIF occurs through abrogation of hydroxylation of a conserved asparagine in the CAD. Inhibitors of Fe(II)- and 2-oxoglutarate–dependent dioxygenases prevented hydroxylation of the Asn, thus allowing the CAD to interact with the p300 transcription coactivator. Replacement of the conserved Asn by Ala resulted in constitutive p300 interaction and strong transcriptional activity. Full induction of HIF-1α and -2α, therefore, relies on the abrogation of both Pro and Asn hydroxylation, which during normoxia occur at the degradation and COOH-terminal transactivation domains, respectively.

1,501 citations

Journal ArticleDOI
TL;DR: It is shown that the protein FIH-1, previously shown to interact with HIF, is an asparaginyl hydroxylase, an Fe(II)-dependent enzyme that uses molecular O(2) to modify its substrate.
Abstract: Mammalian cells adapt to hypoxic conditions through a transcriptional response pathway mediated by the hypoxia-inducible factor, HIF. HIF transcriptional activity is suppressed under normoxic conditions by hydroxylation of an asparagine residue within its C-terminal transactivation domain, blocking association with coactivators. Here we show that the protein FIH-1, previously shown to interact with HIF, is an asparaginyl hydroxylase. Like known hydroxylase enzymes, FIH-1 is an Fe(II)-dependent enzyme that uses molecular O(2) to modify its substrate. Together with the recently discovered prolyl hydroxylases that regulate HIF stability, this class of oxygen-dependent enzymes comprises critical regulatory components of the hypoxic response pathway.

1,499 citations


Authors

Showing all 27579 results

NameH-indexPapersCitations
Martin White1962038232387
Nicholas G. Martin1921770161952
David W. Johnson1602714140778
Nicholas J. Talley158157190197
Mark E. Cooper1581463124887
Xiang Zhang1541733117576
John E. Morley154137797021
Howard I. Scher151944101737
Christopher M. Dobson1501008105475
A. Artamonov1501858119791
Timothy P. Hughes14583191357
Christopher Hill1441562128098
Shi-Zhang Qiao14252380888
Paul Jackson141137293464
H. A. Neal1411903115480
Network Information
Related Institutions (5)
University of Melbourne
174.8K papers, 6.3M citations

97% related

University of British Columbia
209.6K papers, 9.2M citations

92% related

McGill University
162.5K papers, 6.9M citations

92% related

University of Edinburgh
151.6K papers, 6.6M citations

92% related

Imperial College London
209.1K papers, 9.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023127
2022597
20215,501
20205,342
20194,803
20184,443