scispace - formally typeset
Search or ask a question
Institution

University of Exeter

EducationExeter, United Kingdom
About: University of Exeter is a education organization based out in Exeter, United Kingdom. It is known for research contribution in the topics: Population & Context (language use). The organization has 15820 authors who have published 50650 publications receiving 1793046 citations. The organization is also known as: Exeter University & University of the South West of England.


Papers
More filters
Journal ArticleDOI
TL;DR: Six previously unknown loci associated with fasting insulin at P < 5 × 10−8 in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals are presented.
Abstract: Recent genome-wide association studies have described many loci implicated in type 2 diabetes (T2D) pathophysiology and β-cell dysfunction but have contributed little to the understanding of the genetic basis of insulin resistance. We hypothesized that genes implicated in insulin resistance pathways might be uncovered by accounting for differences in body mass index (BMI) and potential interactions between BMI and genetic variants. We applied a joint meta-analysis approach to test associations with fasting insulin and glucose on a genome-wide scale. We present six previously unknown loci associated with fasting insulin at P < 5 × 10(-8) in combined discovery and follow-up analyses of 52 studies comprising up to 96,496 non-diabetic individuals. Risk variants were associated with higher triglyceride and lower high-density lipoprotein (HDL) cholesterol levels, suggesting a role for these loci in insulin resistance pathways. The discovery of these loci will aid further characterization of the role of insulin resistance in T2D pathophysiology.

811 citations

Journal ArticleDOI
TL;DR: This work shows how functional genomics approaches are providing new insight into the genetic control of plant infection by M. oryzae, and looks ahead to the key questions that need to be addressed to provide a better understanding of the molecular processes that lead to plant disease and the prospects for sustainable control of rice blast.
Abstract: The filamentous fungus Magnaporthe oryzae causes rice blast, the most serious disease of cultivated rice. Cellular differentiation of M. oryzae forms an infection structure called the appressorium, which generates enormous cellular turgor that is sufficient to rupture the plant cuticle. Here, we show how functional genomics approaches are providing new insight into the genetic control of plant infection by M. oryzae. We also look ahead to the key questions that need to be addressed to provide a better understanding of the molecular processes that lead to plant disease and the prospects for sustainable control of rice blast.

811 citations

Journal ArticleDOI
18 May 2018-Science
TL;DR: To avoid a global collapse in the ability to control fungal infections and to avoid critical failures in medicine and food security, the authors must improve the stewardship of extant chemicals, promote new antifungal discovery, and leverage emerging technologies for alternative solutions.
Abstract: The recent rate of emergence of pathogenic fungi that are resistant to the limited number of commonly used antifungal agents is unprecedented. The azoles, for example, are used not only for human and animal health care and crop protection but also in antifouling coatings and timber preservation. The ubiquity and multiple uses of azoles have hastened the independent evolution of resistance in many environments. One consequence is an increasing risk in human health care from naturally occurring opportunistic fungal pathogens that have acquired resistance to this broad class of chemicals. To avoid a global collapse in our ability to control fungal infections and to avoid critical failures in medicine and food security, we must improve our stewardship of extant chemicals, promote new antifungal discovery, and leverage emerging technologies for alternative solutions.

807 citations

Journal ArticleDOI
TL;DR: Researchers use phase-change materials to demonstrate an integrated optical memory with 13.4 pJ switching energy with real-time switching energy.
Abstract: Researchers use phase-change materials to demonstrate an integrated optical memory with 13.4 pJ switching energy.

806 citations

Journal ArticleDOI

806 citations


Authors

Showing all 16338 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
John C. Morris1831441168413
David W. Johnson1602714140778
Kevin J. Gaston15075085635
Andrew T. Hattersley146768106949
Timothy M. Frayling133500100344
Joel N. Hirschhorn133431101061
Jonathan D. G. Jones12941780908
Graeme I. Bell12753161011
Mark D. Griffiths124123861335
Tao Zhang123277283866
Brinick Simmons12269169350
Edzard Ernst120132655266
Michael Stumvoll11965569891
Peter McGuffin11762462968
Network Information
Related Institutions (5)
University of Birmingham
115.3K papers, 4.3M citations

96% related

University of Manchester
168K papers, 6.4M citations

96% related

University of Oxford
258.1K papers, 12.9M citations

95% related

University of Bristol
113.1K papers, 4.9M citations

95% related

University College London
210.6K papers, 9.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023295
2022782
20214,412
20204,192
20193,721
20183,385