scispace - formally typeset
Search or ask a question
Institution

University of Exeter

EducationExeter, United Kingdom
About: University of Exeter is a education organization based out in Exeter, United Kingdom. It is known for research contribution in the topics: Population & Context (language use). The organization has 15820 authors who have published 50650 publications receiving 1793046 citations. The organization is also known as: Exeter University & University of the South West of England.


Papers
More filters
Journal ArticleDOI
TL;DR: The Chandra Orion Ultradeep Project (COUP) as discussed by the authors provides the most uniform and comprehensive data set on the X-ray emission of normal stars ever obtained in the history of Xray astronomy.
Abstract: We present a description of the data reduction methods and the derived catalog of more than 1600 X-ray point sources from the exceptionally deep 2003 January Chandra X-Ray Observatory (Chandra) observation of the Orion Nebula Cluster and embedded populations around OMC-1. The observation was obtained with Chandra's Advanced CCD Imaging Spectrometer (ACIS) and has been nicknamed the Chandra Orion Ultradeep Project (COUP). With an 838 ks exposure made over a continuous period of 13.2 days, the COUP observation provides the most uniform and comprehensive data set on the X-ray emission of normal stars ever obtained in the history of X-ray astronomy.

412 citations

Journal ArticleDOI
20 Apr 2018-Science
TL;DR: AO-LLSM takes high-resolution live-cell imaging of subcellular processes from the confines of the coverslip to the more physiologically relevant 3D environment within whole transparent organisms and creates new opportunities to study the phenotypic diversity of intracellular dynamics, extracellular communication, and collective cell behavior across different cell types, organisms, and developmental stages.
Abstract: True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments.

412 citations

Journal ArticleDOI
TL;DR: It is confirmed that vitamin D deficiency is associated with a substantially increased risk of all-cause dementia and Alzheimer disease, and adds to the ongoing debate about the role of vitamin D in nonskeletal conditions.
Abstract: Objective: To determine whether low vitamin D concentrations are associated with an increased risk of incident all-cause dementia and Alzheimer disease. Methods: One thousand six hundred fifty-eight elderly ambulatory adults free from dementia, cardiovascular disease, and stroke who participated in the US population–based Cardiovascular Health Study between 1992–1993 and 1999 were included. Serum 25-hydroxyvitamin D (25 (OH)D) concentrations were determined by liquid chromatography-tandem mass spectrometry from blood samples collected in 1992–1993. Incident all-cause dementia and Alzheimer disease status were assessed during follow-up using National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer’s Disease and Related Disorders Association criteria. Results: During a mean follow-up of 5.6 years, 171 participants developed all-cause dementia, including 102 cases of Alzheimer disease. Using Cox proportional hazards models, the multivariate adjusted hazard ratios (95% confidence interval [CI]) for incident all-cause dementia in participants who were severely 25(OH)D deficient (,25 nmol/L) and deficient ($25 to ,50 nmol/L) were 2.25 (95% CI: 1.23–4.13) and 1.53 (95% CI: 1.06–2.21) compared to participants with sufficient concentrations ($50 nmol/L). The multivariate adjusted hazard ratios for incident Alzheimer disease in participants who were severely 25(OH)D deficient and deficient compared to participants with sufficient concentrations were 2.22 (95% CI: 1.02–4.83) and 1.69 (95% CI: 1.06–2.69). In multivariate adjusted penalized smoothing spline plots, the risk of all-cause dementia and Alzheimer disease markedly increased below a threshold of 50 nmol/L. Conclusion: Our results confirm that vitamin D deficiency is associated with a substantially increased risk of all-cause dementia and Alzheimer disease. This adds to the ongoing debate about the role of vitamin D in nonskeletal conditions. Neurology® 2014;83:1–9

411 citations

Journal ArticleDOI
TL;DR: Hydrodynamic conditions control two interlinked parameters; mass transfer and drag, and will, therefore, significantly influence many of the processes involved in biofilm development.
Abstract: Hydrodynamic conditions control two interlinked parameters; mass transfer and drag, and will, therefore, significantly influence many of the processes involved in biofilm development. The goal of this research was to determine the effect of flow velocity and nutrients on biofilm structure. Biofilms were grown in square glass capillary flow cells under laminar and turbulent flows. Biofilms were observed microscopically under flow conditions using image analysis. Mixed species bacterial biofilms were grown with glucose (40 mg/l) as the limiting nutrient. Biofilms grown under laminar conditions were patchy and consisted of roughly circular cell clusters separated by interstitial voids. Biofilms in the turbulent flow cell were also patchy but these biofilms consisted of patches of ripples and elongated 'streamers' which oscillated in the flow. To assess the influence of changing nutrient conditions on biofilm structure the glucose concentration was increased from 40 to 400 mg/l on an established 21 day old biofilm growing in turbulent flow. The cell clusters grew rapidly and the thickness of the biofilm increased from 30 μ to 130 μ within 17 h. The ripples disappeared after 10 hours. After 5 d the glucose concentration was reduced back to 40 mg/l. There was a loss of biomass and patches of ripples were re-established within a further 2 d.

411 citations

Journal ArticleDOI
08 May 2009-Science
TL;DR: A better understanding of cross-talk between hormonal and defense signaling pathways should reveal new potential targets for microbial effectors that attenuate host resistance mechanisms.
Abstract: Diseased plants often display phenotypes consistent with hormone perturbations. We review recent data that have revealed roles in plant-microbe interactions for cellular components and signaling molecules that previously were associated only with hormone signaling. A better understanding of cross-talk between hormonal and defense signaling pathways should reveal new potential targets for microbial effectors that attenuate host resistance mechanisms.

410 citations


Authors

Showing all 16338 results

NameH-indexPapersCitations
Frank B. Hu2501675253464
John C. Morris1831441168413
David W. Johnson1602714140778
Kevin J. Gaston15075085635
Andrew T. Hattersley146768106949
Timothy M. Frayling133500100344
Joel N. Hirschhorn133431101061
Jonathan D. G. Jones12941780908
Graeme I. Bell12753161011
Mark D. Griffiths124123861335
Tao Zhang123277283866
Brinick Simmons12269169350
Edzard Ernst120132655266
Michael Stumvoll11965569891
Peter McGuffin11762462968
Network Information
Related Institutions (5)
University of Birmingham
115.3K papers, 4.3M citations

96% related

University of Manchester
168K papers, 6.4M citations

96% related

University of Oxford
258.1K papers, 12.9M citations

95% related

University of Bristol
113.1K papers, 4.9M citations

95% related

University College London
210.6K papers, 9.8M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023295
2022782
20214,412
20204,192
20193,721
20183,385