scispace - formally typeset
Search or ask a question

Showing papers by "University of Exeter published in 2015"


Journal ArticleDOI
TL;DR: In this paper, the authors presented new models for low-mass stars down to the hydrogen-burning limit that consistently couple atmosphere and interior structures, thereby superseding the widely used BCAH98 models.
Abstract: We present new models for low-mass stars down to the hydrogen-burning limit that consistently couple atmosphere and interior structures, thereby superseding the widely used BCAH98 models. The new models include updated molecular linelists and solar abundances, as well as atmospheric convection parameters calibrated on 2D/3D radiative hydrodynamics simulations. Comparison of these models with observations in various colour-magnitude diagrams for various ages shows significant improvement over previous generations of models. The new models can solve flaws that are present in the previous ones, such as the prediction of optical colours that are too blue compared to M dwarf observations. They can also reproduce the four components of the young quadruple system LkCa 3 in a colour‐magnitude diagram with one single isochrone, in contrast to any presently existing model. In this paper we also highlight the need for consistency when comparing models and observations, with the necessity of using evolutionary models and colours based on the same atmospheric structures.

1,564 citations



Journal ArticleDOI
TL;DR: This review looks at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots.
Abstract: In this review we look at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots. We explore the phenomenon of strong coupling with reference to a number of examples involving electromagnetic fields and matter. We then provide a concise description of the relevant background physics of surface plasmon polaritons. An extensive overview of the historical background and a detailed discussion of more recent relevant experimental advances concerning strong coupling between surface plasmon polaritons and quantum emitters is then presented. Three conceptual frameworks are then discussed and compared in depth: classical, semi-classical and fully quantum mechanical; these theoretical frameworks will have relevance to strong coupling beyond that involving surface plasmon polaritons. We conclude our review with a perspective on the future of this rapidly emerging field, one we are sure will grow to encompass more intriguing physics and will develop in scope to be of relevance to other areas of science.

1,190 citations


Journal ArticleDOI
TL;DR: The history, scope, application and underlying principles of terms used in urban drainage and recommendations for clear communication of these principles are provided.
Abstract: The management of urban stormwater has become increasingly complex over recent decades. Consequently, terminology describing the principles and practices of urban drainage has become increasingly diverse, increasing the potential for confusion and miscommunication. This paper documents the history, scope, application and underlying principles of terms used in urban drainage and provides recommendations for clear communication of these principles. Terminology evolves locally and thus has an important role in establishing awareness and credibility of new approaches and contains nuanced understandings of the principles that are applied locally to address specific problems. Despite the understandable desire to have a ‘uniform set of terminology’, such a concept is flawed, ignoring the fact that terms reflect locally shared understanding. The local development of terminology thus has an important role in advancing the profession, but authors should facilitate communication between disciplines and between regio...

1,152 citations


Journal ArticleDOI
22 May 2015-Science
TL;DR: Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, it is shown that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions.
Abstract: The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature.

948 citations


Journal ArticleDOI
TL;DR: It is demonstrated that ingestion of microplastics can significantly alter the feeding capacity of the pelagic copepod Calanus helgolandicus and constructed a conceptual energetic (carbon) budget showing that microplastic-exposed copepods suffer energetic depletion over time.
Abstract: Microscopic plastic debris, termed “microplastics”, are of increasing environmental concern. Recent studies have demonstrated that a range of zooplankton, including copepods, can ingest microplastics. Copepods are a globally abundant class of zooplankton that form a key trophic link between primary producers and higher trophic marine organisms. Here we demonstrate that ingestion of microplastics can significantly alter the feeding capacity of the pelagic copepod Calanus helgolandicus. Exposed to 20 μm polystyrene beads (75 microplastics mL(–1)) and cultured algae ([250 μg C L(–1)) for 24 h, C. helgolandicus ingested 11% fewer algal cells (P = 0.33) and 40% less carbon biomass (P < 0.01). There was a net downward shift in the mean size of algal prey consumed (P < 0.001), with a 3.6 fold increase in ingestion rate for the smallest size class of algal prey (11.6–12.6 μm), suggestive of postcapture or postingestion rejection. Prolonged exposure to polystyrene microplastics significantly decreased reproductive output, but there were no significant differences in egg production rates, respiration or survival. We constructed a conceptual energetic (carbon) budget showing that microplastic-exposed copepods suffer energetic depletion over time. We conclude that microplastics impede feeding in copepods, which over time could lead to sustained reductions in ingested carbon biomass.

892 citations


Journal ArticleDOI
TL;DR: Researchers use phase-change materials to demonstrate an integrated optical memory with 13.4 pJ switching energy with real-time switching energy.
Abstract: Researchers use phase-change materials to demonstrate an integrated optical memory with 13.4 pJ switching energy.

806 citations


Journal ArticleDOI
Roel J. W. Brienen1, Oliver L. Phillips1, Ted R. Feldpausch2, Ted R. Feldpausch1, Emanuel Gloor1, Timothy R. Baker1, Jon Lloyd3, Jon Lloyd4, Gabriela Lopez-Gonzalez1, Abel Monteagudo-Mendoza, Yadvinder Malhi5, Simon L. Lewis1, Simon L. Lewis6, R. Vásquez Martínez, Miguel Alexiades7, E. Alvarez Dávila, Patricia Alvarez-Loayza8, Ana Andrade9, Luiz E. O. C. Aragão10, Luiz E. O. C. Aragão2, Alejandro Araujo-Murakami11, Eric Arets12, Luzmila Arroyo11, Olaf Bánki13, Christopher Baraloto14, Christopher Baraloto15, Jorcely Barroso16, Damien Bonal15, René G. A. Boot17, José Luís Camargo9, Carolina V. Castilho18, V. Chama, Kuo-Jung Chao19, Kuo-Jung Chao1, Jérôme Chave20, James A. Comiskey21, F. Cornejo Valverde22, L da Costa23, E. A. de Oliveira24, A. Di Fiore25, Terry L. Erwin26, Sophie Fauset1, Mônica Forsthofer24, David W. Galbraith1, E S Grahame1, Nikée Groot1, Bruno Hérault, Niro Higuchi9, E.N. Honorio Coronado1, E.N. Honorio Coronado22, Helen C. Keeling1, Timothy J. Killeen27, William F. Laurance4, Susan G. Laurance4, Juan Carlos Licona, W E Magnussen, Beatriz Schwantes Marimon24, Ben Hur Marimon-Junior24, Casimiro Mendoza28, David A. Neill, Euler Melo Nogueira, Pablo Núñez, N. C. Pallqui Camacho, Alexander Parada11, G. Pardo-Molina, Julie Peacock1, Marielos Peña-Claros12, Georgia Pickavance1, Nigel C. A. Pitman8, Nigel C. A. Pitman29, Lourens Poorter12, Adriana Prieto30, Carlos A. Quesada, Fredy Ramírez30, Hirma Ramírez-Angulo31, Zorayda Restrepo, Anand Roopsind, Agustín Rudas32, Rafael de Paiva Salomão33, Michael P. Schwarz1, Natalino Silva, Javier E. Silva-Espejo, Marcos Silveira16, Juliana Stropp, Joey Talbot1, H. ter Steege34, H. ter Steege35, J Teran-Aguilar, John Terborgh8, Raquel Thomas-Caesar, Marisol Toledo, Mireia Torello-Raventos4, Ricardo Keichi Umetsu24, G. M. F. van der Heijden36, G. M. F. van der Heijden37, G. M. F. van der Heijden38, P. van der Hout, I. C. Guimarães Vieira33, Simone Aparecida Vieira39, Emilio Vilanova31, Vincent A. Vos, Roderick Zagt17 
19 Mar 2015-Nature
TL;DR: It is confirmed that Amazon forests have acted as a long-term net biomass sink, but the observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models
Abstract: Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

767 citations


Journal ArticleDOI
TL;DR: DEPICT as mentioned in this paper is an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated locis are highly expressed.
Abstract: The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes.

699 citations


Journal ArticleDOI
TL;DR: The efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present is investigated and it is illustrated that enzyme digestion can aid the detection of microplastic debris within seawater samples and marine biota.
Abstract: Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m(-3). The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota.

698 citations


Journal ArticleDOI
TL;DR: This is the first review encompassing many cancer types, and it is demonstrated that efforts to expedite the diagnosis of symptomatic cancer are likely to have benefits for patients in terms of improved survival, earlier-stage diagnosis and improved quality of life, although these benefits vary between cancers.
Abstract: It is unclear whether more timely cancer diagnosis brings favourable outcomes, with much of the previous evidence, in some cancers, being equivocal. We set out to determine whether there is an association between time to diagnosis, treatment and clinical outcomes, across all cancers for symptomatic presentations. Systematic review of the literature and narrative synthesis. We included 177 articles reporting 209 studies. These studies varied in study design, the time intervals assessed and the outcomes reported. Study quality was variable, with a small number of higher-quality studies. Heterogeneity precluded definitive findings. The cancers with more reports of an association between shorter times to diagnosis and more favourable outcomes were breast, colorectal, head and neck, testicular and melanoma. This is the first review encompassing many cancer types, and we have demonstrated those cancers in which more evidence of an association between shorter times to diagnosis and more favourable outcomes exists, and where it is lacking. We believe that it is reasonable to assume that efforts to expedite the diagnosis of symptomatic cancer are likely to have benefits for patients in terms of improved survival, earlier-stage diagnosis and improved quality of life, although these benefits vary between cancers.

Journal ArticleDOI
University of East Anglia1, University of Oslo2, Commonwealth Scientific and Industrial Research Organisation3, University of Exeter4, Oak Ridge National Laboratory5, Woods Hole Research Center6, University of Bristol7, Scripps Institution of Oceanography8, National Oceanic and Atmospheric Administration9, Karlsruhe Institute of Technology10, University of Miami11, Centre national de la recherche scientifique12, University of Maryland, College Park13, Aix-Marseille University14, Flanders Marine Institute15, Alfred Wegener Institute for Polar and Marine Research16, Max Planck Society17, University of Illinois at Urbana–Champaign18, Plymouth Marine Laboratory19, Netherlands Environmental Assessment Agency20, Lawrence Berkeley National Laboratory21, ETH Zurich22, Bjerknes Centre for Climate Research23, University of Paris24, Woods Hole Oceanographic Institution25, Institute of Arctic and Alpine Research26, Japan Agency for Marine-Earth Science and Technology27, National Institute for Environmental Studies28, University of Washington29, University of Bergen30, Spanish National Research Council31, Montana State University32, Leibniz Institute for Baltic Sea Research33, Japan Meteorological Agency34, Leibniz Institute of Marine Sciences35, Imperial College London36, University of Bern37, Joint Institute for the Study of the Atmosphere and Ocean38, Lamont–Doherty Earth Observatory39, Hobart Corporation40, Wageningen University and Research Centre41, VU University Amsterdam42, University of New Hampshire43, Met Office44
TL;DR: In this article, the authors presented a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community.
Abstract: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005–2014), EFF was 9.0 ± 0.5 GtC yr−1, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 4.4 ± 0.1 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 3.0 ± 0.8 GtC yr−1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yr−1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr−1 that took place during 2005–2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yr−1, GATM was 3.9 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 4.1 ± 0.9 GtC yr−1. GATM was lower in 2014 compared to the past decade (2005–2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870–2015, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quere et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2015).

Journal ArticleDOI
TL;DR: In this paper, the authors present a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community.
Abstract: Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO 2 emissions from fossil fuel combustion and cement production (E FF ) are based on energy statistics and cement production data, respectively, while emissions from land-use change (E LUC ), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth (G ATM ) is computed from the annual changes in concentration. The mean ocean CO 2 sink (S OCEAN ) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in S OCEAN is evaluated with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink (S LAND ) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2 , and land-cover-change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2004–2013), E FF was 8.9 ± 0.4 GtC yr −1 , E LUC 0.9 ± 0.5 GtC yr −1 , G ATM 4.3 ± 0.1 GtC yr −1 , S OCEAN 2.6 ± 0.5 GtC yr −1 , and S LAND 2.9 ± 0.8 GtC yr −1 . For year 2013 alone, E FF grew to 9.9 ± 0.5 GtC yr −1 , 2.3% above 2012, continuing the growth trend in these emissions, E LUC was 0.9 ± 0.5 GtC yr −1 , G ATM was 5.4 ± 0.2 GtC yr −1 , S OCEAN was 2.9 ± 0.5 GtC yr −1 and S LAND was 2.5 ± 0.9 GtC yr −1 . G ATM was high in 2013, reflecting a steady increase in E FF and smaller and opposite changes between S OCEAN and S LAND compared to the past decade (2004–2013). The global atmospheric CO 2 concentration reached 395.31 ± 0.10 ppm averaged over 2013. We estimate that E FF will increase by 2.5% (1.3–3.5%) to 10.1 ± 0.6 GtC in 2014 (37.0 ± 2.2 GtCO 2 yr −1 ), 65% above emissions in 1990, based on projections of world gross domestic product and recent changes in the carbon intensity of the global economy. From this projection of E FF and assumed constant E LUC for 2014, cumulative emissions of CO 2 will reach about 545 ± 55 GtC (2000 ± 200 GtCO 2 ) for 1870–2014, about 75% from EF FF and 25% from E LUC . This paper documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this living data set (Le Quere et al., 2013, 2014). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2014).

Journal ArticleDOI
TL;DR: In this article, a suite of nine dynamic global vegetation models and four ocean biogeochemical general circulation models were used to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990-2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement.
Abstract: . The land and ocean absorb on average just over half of the anthropogenic emissions of carbon dioxide (CO2) every year. These CO2 "sinks" are modulated by climate change and variability. Here we use a suite of nine dynamic global vegetation models (DGVMs) and four ocean biogeochemical general circulation models (OBGCMs) to estimate trends driven by global and regional climate and atmospheric CO2 in land and oceanic CO2 exchanges with the atmosphere over the period 1990–2009, to attribute these trends to underlying processes in the models, and to quantify the uncertainty and level of inter-model agreement. The models were forced with reconstructed climate fields and observed global atmospheric CO2; land use and land cover changes are not included for the DGVMs. Over the period 1990–2009, the DGVMs simulate a mean global land carbon sink of −2.4 ± 0.7 Pg C yr−1 with a small significant trend of −0.06 ± 0.03 Pg C yr−2 (increasing sink). Over the more limited period 1990–2004, the ocean models simulate a mean ocean sink of −2.2 ± 0.2 Pg C yr−1 with a trend in the net C uptake that is indistinguishable from zero (−0.01 ± 0.02 Pg C yr−2). The two ocean models that extended the simulations until 2009 suggest a slightly stronger, but still small, trend of −0.02 ± 0.01 Pg C yr−2. Trends from land and ocean models compare favourably to the land greenness trends from remote sensing, atmospheric inversion results, and the residual land sink required to close the global carbon budget. Trends in the land sink are driven by increasing net primary production (NPP), whose statistically significant trend of 0.22 ± 0.08 Pg C yr−2 exceeds a significant trend in heterotrophic respiration of 0.16 ± 0.05 Pg C yr−2 – primarily as a consequence of widespread CO2 fertilisation of plant production. Most of the land-based trend in simulated net carbon uptake originates from natural ecosystems in the tropics (−0.04 ± 0.01 Pg C yr−2), with almost no trend over the northern land region, where recent warming and reduced rainfall offsets the positive impact of elevated atmospheric CO2 and changes in growing season length on carbon storage. The small uptake trend in the ocean models emerges because climate variability and change, and in particular increasing sea surface temperatures, tend to counter\-act the trend in ocean uptake driven by the increase in atmospheric CO2. Large uncertainty remains in the magnitude and sign of modelled carbon trends in several regions, as well as regarding the influence of land use and land cover changes on regional trends.

Journal ArticleDOI
TL;DR: A review of the state of knowledge on the El Nino/Southern Oscillation (ENSO), a natural climate phenomenon, can be found in this article, where the authors discuss recent advances and insights into how climate change will affect this natural climate varibility cycle.
Abstract: This Review looks at the state of knowledge on the El Nino/Southern Oscillation (ENSO), a natural climate phenomenon. It discusses recent advances and insights into how climate change will affect this natural climate varibility cycle. The El Nino/Southern Oscillation (ENSO) is the dominant climate phenomenon affecting extreme weather conditions worldwide. Its response to greenhouse warming has challenged scientists for decades, despite model agreement on projected changes in mean state. Recent studies have provided new insights into the elusive links between changes in ENSO and in the mean state of the Pacific climate. The projected slow-down in Walker circulation is expected to weaken equatorial Pacific Ocean currents, boosting the occurrences of eastward-propagating warm surface anomalies that characterize observed extreme El Nino events. Accelerated equatorial Pacific warming, particularly in the east, is expected to induce extreme rainfall in the eastern equatorial Pacific and extreme equatorward swings of the Pacific convergence zones, both of which are features of extreme El Nino. The frequency of extreme La Nina is also expected to increase in response to more extreme El Ninos, an accelerated maritime continent warming and surface-intensified ocean warming. ENSO-related catastrophic weather events are thus likely to occur more frequently with unabated greenhouse-gas emissions. But model biases and recent observed strengthening of the Walker circulation highlight the need for further testing as new models, observations and insights become available.

Journal ArticleDOI
TL;DR: Simon Lewin and colleagues present a methodology for increasing transparency and confidence in qualitative research synthesis with a focus on quantitative research synthesis.
Abstract: Simon Lewin and colleagues present a methodology for increasing transparency and confidence in qualitative research synthesis.

Journal ArticleDOI
Thomas W. Winkler1, Anne E. Justice2, Mariaelisa Graff2, Llilda Barata3  +435 moreInstitutions (106)
TL;DR: In this paper, the authors performed meta-analyses of 114 studies with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium.
Abstract: Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the use of three reporting practices: stand-alone reports, assurance, and reporting guidance in relation to disclosure proxies that capture the quality of disclosure along three complementary dimensions: the content of the information disclosed, the type of information used to describe and discuss CSR issues, and the managerial orientation.

Journal ArticleDOI
Bruce Macintosh1, Bruce Macintosh2, James R. Graham3, Travis Barman4, R. J. De Rosa3, Quinn Konopacky5, Mark S. Marley6, Christian Marois7, Christian Marois8, Eric L. Nielsen2, Laurent Pueyo9, Abhijith Rajan10, Julien Rameau11, Didier Saumon12, Jason J. Wang3, Jennifer Patience10, Mark Ammons1, Pauline Arriaga13, Étienne Artigau11, Steven V. W. Beckwith3, J. Brewster, Sebastian Bruzzone14, Joanna Bulger10, Joanna Bulger15, Ben Burningham16, Ben Burningham6, Adam Burrows17, Christine Chen9, Eugene Chiang3, Jeffrey Chilcote18, Rebekah I. Dawson3, Ruobing Dong3, René Doyon11, Z. H. Draper7, Gaspard Duchêne19, Gaspard Duchêne3, Thomas M. Esposito13, Daniel C. Fabrycky20, Michael P. Fitzgerald13, Katherine B. Follette2, J. J. Fortney21, B. L. Gerard7, S. Goodsell22, A. Z. Greenbaum9, P. Hibon, Sasha Hinkley23, Tara Cotten24, Li-Wei Hung13, Patrick Ingraham, M. Johnson-Groh7, Paul Kalas3, David Lafrenière11, James E. Larkin13, J. Lee24, Michael R. Line21, Douglas Long9, Jérôme Maire18, Franck Marchis, Brenda C. Matthews7, Brenda C. Matthews8, Claire E. Max21, Stanimir Metchev25, Stanimir Metchev14, Max Millar-Blanchaer18, Tushar Mittal3, Caroline V. Morley21, Katie M. Morzinski4, R. Murray-Clay26, Rebecca Oppenheimer27, Dave Palmer1, Rahul Patel25, Marshall D. Perrin9, Lisa Poyneer1, Roman R. Rafikov17, Fredrik T. Rantakyrö, Emily L. Rice27, Patricio Rojo28, Alex Rudy21, Jean-Baptiste Ruffio2, Maria Teresa Ruiz28, Naru Sadakuni29, Leslie Saddlemyer7, M. Salama3, Dmitry Savransky30, Adam C. Schneider31, Anand Sivaramakrishnan9, Inseok Song24, Rémi Soummer9, S. Thomas, Gautam Vasisht32, James K. Wallace32, Kimberly Ward-Duong10, Sloane J. Wiktorowicz21, Schuyler Wolff9, Barry Zuckerman13 
02 Oct 2015-Science
TL;DR: Using the Gemini Planet Imager, a Jupiter-like planet is discovered orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units and has a methane signature and is probably the smallest exoplanet that has been directly imaged.
Abstract: Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10(-6) and an effective temperature of 600 to 750 kelvin. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold-start" core-accretion process that may have formed Jupiter.

Journal ArticleDOI
TL;DR: It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others, and the vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker.
Abstract: Significance: Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. Critical Issues: The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clin...

Journal ArticleDOI
26 Feb 2015-Nature
TL;DR: In providing the first experimental demonstration of conformity in a wild non-primate, and of cultural norms in foraging techniques in any wild animal, the results suggest a much broader taxonomic occurrence of such an apparently complex cultural behaviour.
Abstract: In human societies, cultural norms arise when behaviours are transmitted through social networks via high-fidelity social learning. However, a paucity of experimental studies has meant that there is no comparable understanding of the process by which socially transmitted behaviours might spread and persist in animal populations. Here we show experimental evidence of the establishment of foraging traditions in a wild bird population. We introduced alternative novel foraging techniques into replicated wild sub-populations of great tits (Parus major) and used automated tracking to map the diffusion, establishment and long-term persistence of the seeded innovations. Furthermore, we used social network analysis to examine the social factors that influenced diffusion dynamics. From only two trained birds in each sub-population, the information spread rapidly through social network ties, to reach an average of 75% of individuals, with a total of 414 knowledgeable individuals performing 57,909 solutions over all replicates. The sub-populations were heavily biased towards using the technique that was originally introduced, resulting in established local traditions that were stable over two generations, despite a high population turnover. Finally, we demonstrate a strong effect of social conformity, with individuals disproportionately adopting the most frequent local variant when first acquiring an innovation, and continuing to favour social information over personal information. Cultural conformity is thought to be a key factor in the evolution of complex culture in humans. In providing the first experimental demonstration of conformity in a wild non-primate, and of cultural norms in foraging techniques in any wild animal, our results suggest a much broader taxonomic occurrence of such an apparently complex cultural behaviour.

Journal ArticleDOI
TL;DR: In this paper, a self-consistent, absolute isochronal age scale for young (< 200 Myr), nearby (< 100 pc) moving groups in the solar neighbourhood based on homogeneous fitting of semi-empirical pre-main-sequence model isochrones using the tau^2 maximum-likelihood fitting statistic of Naylor & Jeffries in the M_V, V-J colour-magnitude diagram is presented.
Abstract: We present a self-consistent, absolute isochronal age scale for young (< 200 Myr), nearby (< 100 pc) moving groups in the solar neighbourhood based on homogeneous fitting of semi-empirical pre-main-sequence model isochrones using the tau^2 maximum-likelihood fitting statistic of Naylor & Jeffries in the M_V, V-J colour-magnitude diagram. The final adopted ages for the groups are: 149+51-19 Myr for the AB Dor moving group, 24+/-3 Myr for the {\beta} Pic moving group (BPMG), 45+11-7 Myr for the Carina association, 42+6-4 Myr for the Columba association, 11+/-3 Myr for the {\eta} Cha cluster, 45+/-4 Myr for the Tucana-Horologium moving group (Tuc-Hor), 10+/-3 Myr for the TW Hya association, and 22+4-3 Myr for the 32 Ori group. At this stage we are uncomfortable assigning a final, unambiguous age to the Argus association as our membership list for the association appears to suffer from a high level of contamination, and therefore it remains unclear whether these stars represent a single population of coeval stars. Our isochronal ages for both the BPMG and Tuc-Hor are consistent with recent lithium depletion boundary (LDB) ages, which unlike isochronal ages, are relatively insensitive to the choice of low-mass evolutionary models. This consistency between the isochronal and LDB ages instills confidence that our self-consistent, absolute age scale for young, nearby moving groups is robust, and hence we suggest that these ages be adopted for future studies of these groups. Software implementing the methods described in this study is available from http: //www.astro.ex.ac.uk/people/timn/tau-squared/.

Journal ArticleDOI
TL;DR: The IOC critically evaluated the current state of science and practice of youth athlete development and presented recommendations for developing healthy, resilient and capable youth athletes, while providing opportunities for all levels of sport participation and success.
Abstract: The health, fitness and other advantages of youth sports participation are well recognised. However, there are considerable challenges for all stakeholders involved— especially youth athletes—in trying to maintain inclusive, sustainable and enjoyable participation and success for all levels of individual athletic achievement. In an effort to advance a more unified, evidence-informed approach to youth athlete development, the IOC critically evaluated the current state of science and practice of youth athlete development and presented recommendations for developing healthy, resilient and capable youth athletes, while providing opportunities for all levels of sport participation and success. The IOC further challenges all youth and other sport governing bodies to embrace and implement these recommended guiding principles.

Journal ArticleDOI
TL;DR: A review of the influence of the atmospheric layer on storm tracks and surface weather suggests that the dynamical links between the layers hold across timescales as discussed by the authors, and that the atmospheric layers can exert a strong downward influence.
Abstract: The atmospheric layer that lies above Earth's weather systems can exert a strong downward influence. A review of this influence on storm tracks and surface weather suggests that the dynamical links between the layers hold across timescales.

Journal ArticleDOI
TL;DR: These guidelines cover the nature and detection of depressive disorders, acute treatment with antidepressant drugs, choice of drug versus alternative treatment, practical issues in prescribing and management, next-step treatment, relapse prevention, treatment of relapse and stopping treatment.
Abstract: A revision of the 2008 British Association for Psychopharmacology evidence-based guidelines for treating depressive disorders with antidepressants was undertaken in order to incorporate new evidence and to update the recommendations where appropriate. A consensus meeting involving experts in depressive disorders and their management was held in September 2012. Key areas in treating depression were reviewed and the strength of evidence and clinical implications were considered. The guidelines were then revised after extensive feedback from participants and interested parties. A literature review is provided which identifies the quality of evidence upon which the recommendations are made. These guidelines cover the nature and detection of depressive disorders, acute treatment with antidepressant drugs, choice of drug versus alternative treatment, practical issues in prescribing and management, next-step treatment, relapse prevention, treatment of relapse and stopping treatment. Significant changes since the last guidelines were published in 2008 include the availability of new antidepressant treatment options, improved evidence supporting certain augmentation strategies (drug and non-drug), management of potential long-term side effects, updated guidance for prescribing in elderly and adolescent populations and updated guidance for optimal prescribing. Suggestions for future research priorities are also made.

Journal ArticleDOI
TL;DR: Differences between transcriptomic age and chronological age are associated with biological features linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass index and the transcriptomic prediction model adds biological relevance and complements existing epigenetic prediction models.
Abstract: Disease incidences increase with age, but the molecular characteristics of ageing that lead to increased disease susceptibility remain inadequately understood. Here we perform a whole-blood gene expression meta-analysis in 14,983 individuals of European ancestry (including replication) and identify 1,497 genes that are differentially expressed with chronological age. The age-associated genes do not harbor more age-associated CpG-methylation sites than other genes, but are instead enriched for the presence of potentially functional CpG-methylation sites in enhancer and insulator regions that associate with both chronological age and gene expression levels. We further used the gene expression profiles to calculate the 'transcriptomic age' of an individual, and show that differences between transcriptomic age and chronological age are associated with biological features linked to ageing, such as blood pressure, cholesterol levels, fasting glucose, and body mass index. The transcriptomic prediction model adds biological relevance and complements existing epigenetic prediction models, and can be used by others to calculate transcriptomic age in external cohorts.

Journal ArticleDOI
TL;DR: In this paper, an increase in frequency of La Nina events was predicted due to faster land warming relative to the ocean, and a greater chance of them occurring following extreme El Nino events.
Abstract: Extreme La Nina events occur when cold sea surface temperatures across the central Pacific Ocean create a strong temperature gradient to the Maritime continent in the west. This work projects an increase in frequency of La Nina events due to faster land warming relative to the ocean, and a greater chance of them occurring following extreme El Nino events. The El Nino/Southern Oscillation is Earth’s most prominent source of interannual climate variability, alternating irregularly between El Nino and La Nina, and resulting in global disruption of weather patterns, ecosystems, fisheries and agriculture1,2,3,4,5. The 1998–1999 extreme La Nina event that followed the 1997–1998 extreme El Nino event6 switched extreme El Nino-induced severe droughts to devastating floods in western Pacific countries, and vice versa in the southwestern United States4,7. During extreme La Nina events, cold sea surface conditions develop in the central Pacific8,9, creating an enhanced temperature gradient from the Maritime continent to the central Pacific. Recent studies have revealed robust changes in El Nino characteristics in response to simulated future greenhouse warming10,11,12, but how La Nina will change remains unclear. Here we present climate modelling evidence, from simulations conducted for the Coupled Model Intercomparison Project phase 5 (ref. 13), for a near doubling in the frequency of future extreme La Nina events, from one in every 23 years to one in every 13 years. This occurs because projected faster mean warming of the Maritime continent than the central Pacific, enhanced upper ocean vertical temperature gradients, and increased frequency of extreme El Nino events are conducive to development of the extreme La Nina events. Approximately 75% of the increase occurs in years following extreme El Nino events, thus projecting more frequent swings between opposite extremes from one year to the next.

Journal ArticleDOI
25 Jun 2015-Nature
TL;DR: In the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 ± 3.5% (1σ), far beyond the 0.69% optical transit depth, and it is inferred that the planet is surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms.
Abstract: In the ultraviolet spectrum, the Neptune-mass exoplanet GJ 436b is shown to have transit depths far greater than those seen in the optical spectrum, indicating that it is surrounded and trailed by a large cloud composed mainly of hydrogen atoms. Observations of the Neptune-mass exoplanet GJ 436b in the ultraviolet reveal a transit signature that is much deeper and longer than in the optical spectrum, an indication that it is surrounded and trailed by a large cloud of gas escaping from the planetary atmosphere. Numerical simulations indicate that in the ultraviolet GJ 436b looks like a giant comet. The authors propose that the gaseous 'tail' is composed mainly of hydrogen atoms and suggest that the exoplanet may have lost 10% of its atmosphere in its early life. Exoplanets orbiting close to their parent stars may lose some fraction of their atmospheres because of the extreme irradiation1,2,3,4,5,6. Atmospheric mass loss primarily affects low-mass exoplanets, leading to the suggestion that hot rocky planets7,8,9 might have begun as Neptune-like10,11,12,13,14,15,16, but subsequently lost all of their atmospheres; however, no confident measurements have hitherto been available. The signature of this loss could be observed in the ultraviolet spectrum, when the planet and its escaping atmosphere transit the star, giving rise to deeper and longer transit signatures than in the optical spectrum17. Here we report that in the ultraviolet the Neptune-mass exoplanet GJ 436b (also known as Gliese 436b) has transit depths of 56.3 ± 3.5% (1σ), far beyond the 0.69% optical transit depth. The ultraviolet transits repeatedly start about two hours before, and end more than three hours after the approximately one hour optical transit, which is substantially different from one previous claim6 (based on an inaccurate ephemeris). We infer from this that the planet is surrounded and trailed by a large exospheric cloud composed mainly of hydrogen atoms. We estimate a mass-loss rate in the range of about 108–109 grams per second, which is far too small to deplete the atmosphere of a Neptune-like planet in the lifetime of the parent star, but would have been much greater in the past.

Journal ArticleDOI
09 Jan 2015-Vaccine
TL;DR: Correcting myths about vaccines may not be an effective approach to promoting immunization, according to previous research on misperceptions about the MMR vaccine.

Journal ArticleDOI
TL;DR: It is shown that MinION sequence reads can enhance contiguity of de novo assembly when used in conjunction with Illumina MiSeq data, as the first nanopore-based single molecule sequencer available to researchers.