scispace - formally typeset
Search or ask a question
Institution

University of Rennes

EducationRennes, France
About: University of Rennes is a education organization based out in Rennes, France. It is known for research contribution in the topics: Population & Catalysis. The organization has 18404 authors who have published 40374 publications receiving 995327 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a 3D point cloud comparison method is proposed to measure surface changes via 3D surface estimation and orientation in 3D at a scale consistent with the local surface roughness.
Abstract: Surveying techniques such as terrestrial laser scanner have recently been used to measure surface changes via 3D point cloud (PC) comparison. Two types of approaches have been pursued: 3D tracking of homologous parts of the surface to compute a displacement field, and distance calculation between two point clouds when homologous parts cannot be defined. This study deals with the second approach, typical of natural surfaces altered by erosion, sedimentation or vegetation between surveys. Current comparison methods are based on a closest point distance or require at least one of the PC to be meshed with severe limitations when surfaces present roughness elements at all scales. To solve these issues, we introduce a new algorithm performing a direct comparison of point clouds in 3D. The method has two steps: (1) surface normal estimation and orientation in 3D at a scale consistent with the local surface roughness; (2) measurement of the mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing methods demonstrates the higher accuracy of our approach, as well as an easier workflow due to the absence of surface meshing or Digital Elevation Model (DEM) generation. Application of the method in a rapidly eroding, meandering bedrock river (Rangitikei River canyon) illustrates its ability to handle 3D differences in complex situations (flat and vertical surfaces on the same scene), to reduce uncertainty related to point cloud roughness by local averaging and to generate 3D maps of uncertainty levels. We also demonstrate that for high precision survey scanners, the total error budget on change detection is dominated by the point clouds registration error and the surface roughness. Combined with mm-range local georeferencing of the point clouds, levels of detection down to 6 mm (defined at 95% confidence) can be routinely attained in situ over ranges of 50 m. We provide evidence for the self-affine behaviour of different surfaces. We show how this impacts the calculation of normal vectors and demonstrate the scaling behaviour of the level of change detection. The algorithm has been implemented in a freely available open source software package. It operates in complex 3D cases and can also be used as a simpler and more robust alternative to DEM differencing for the 2D cases.

881 citations

Journal ArticleDOI
R. Abbott1, T. D. Abbott2, Sheelu Abraham3, Fausto Acernese4  +1332 moreInstitutions (150)
TL;DR: It is inferred that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M⊙, which can be considered an intermediate mass black hole (IMBH).
Abstract: On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85_{-14}^{+21} M_{⊙} and 66_{-18}^{+17} M_{⊙} (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 M_{⊙}. We calculate the mass of the remnant to be 142_{-16}^{+28} M_{⊙}, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3_{-2.6}^{+2.4} Gpc, corresponding to a redshift of 0.82_{-0.34}^{+0.28}. The inferred rate of mergers similar to GW190521 is 0.13_{-0.11}^{+0.30} Gpc^{-3} yr^{-1}.

876 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +984 moreInstitutions (116)
TL;DR: The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity.
Abstract: On September 14, 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterise the properties of the source and its parameters. The data around the time of the event were analysed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of $36^{+5}_{-4} M_\odot$ and $29^{+4}_{-4} M_\odot$ (for each parameter we report the median value and the range of the 90% credible interval). The dimensionless spin magnitude of the more massive black hole is bound to be $0.7$ (at 90% probability). The luminosity distance to the source is $410^{+160}_{-180}$ Mpc, corresponding to a redshift $0.09^{+0.03}_{-0.04}$ assuming standard cosmology. The source location is constrained to an annulus section of $590$ deg$^2$, primarily in the southern hemisphere. The binary merges into a black hole of $62^{+4}_{-4} M_\odot$ and spin $0.67^{+0.05}_{-0.07}$. This black hole is significantly more massive than any other known in the stellar-mass regime.

874 citations

Journal ArticleDOI
01 Sep 1986-Geology
TL;DR: A comparative study of Archean and post-Archengitic granitic rocks shows significant changes with time as mentioned in this paper, which is a direct consequence of the cooling of Earth, and the high rare-earth element fractionation and the low Yb content of the Archean granitoids indicate the major role of garnet and hornblende, whereas these two minerals do not play a prominent part in the genesis of modern granitic rock.
Abstract: The comparative study of Archean and post-Archean granitic rocks shows significant changes with time. The high rare-earth element fractionation and the low Yb content of the Archean granitoids indicate the major role of garnet and hornblende, whereas these two minerals do not play a prominent part in the genesis of modern granitic rocks. This difference is a direct consequence of the cooling of Earth. In Archean time the subducted oceanic crust was young and warm, so it reached the conditions of melting before dehydration had occurred, leaving a garnet- and hornblende-bearing residue. In contrast, the modern subducted oceanic slab is generally old and cold, so it is dehydrated before it reaches the melting conditions of hydrous tholeiite; therefore, in the absence of a hydrous phase, it cannot melt at shallow depth. The fluids produced by dehydration reactions of modern crust rehydrate the overlying mantle wedge, which, in consequence, can undergo partial melting and give rise to calc-alkaline magmas; in this case, olivine and pyroxene are the most important residual phases. The location of calc-alkaline magma genesis in subduction-zone environments has migrated over time from the subducted Archean oceanic crust to the mantle wedge, a migration attributed to the progressive cooling of Earth.

870 citations

Journal ArticleDOI
30 Mar 2007-Science
TL;DR: In situ techniques show that these flexible solids are highly selective absorbents and that this selectivity is strongly dependent on the nature of the organic linker.
Abstract: An unusually large expansion upon solvent adsorption occurs without apparent bond breaking in the network of a series of isoreticular chromium(III) or iron(III) diarboxylates labeled MIL-88A to D [dicarbox = fumarate (88A); terephthalate (1,4-BDC) (88B); 2,6-naphthalenedicarboxylate (2,6-NDC) (88C); and 4-4'-biphenyldicarboxylate (4-4'-BPDC) (88D)]. This reversible "breathing" motion was analyzed in terms of cell dimensions (extent of breathing), movements within the framework (mechanism of transformation), and the interactions between the guests and the skeleton. In situ techniques show that these flexible solids are highly selective absorbents and that this selectivity is strongly dependent on the nature of the organic linker.

869 citations


Authors

Showing all 18470 results

NameH-indexPapersCitations
Philippe Froguel166820118816
Bart Staels15282486638
Yi Yang143245692268
Geoffrey Burnstock141148899525
Shahrokh F. Shariat118163758900
Lutz Ackermann11666945066
Douglas R. MacFarlane11086454236
Elliott H. Lieb10751257920
Fu-Yuan Wu10736742039
Didier Sornette104129544157
Stefan Hild10345268228
Pierre I. Karakiewicz101120740072
Philippe Dubois101109848086
François Bondu10044069284
Jean-Michel Savéant9851733518
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

Pierre-and-Marie-Curie University
56.1K papers, 2.3M citations

95% related

University of Paris
174.1K papers, 5M citations

95% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202321
2022176
20212,655
20202,735
20192,670
20182,378