scispace - formally typeset
Search or ask a question
Institution

University of Rennes

EducationRennes, France
About: University of Rennes is a education organization based out in Rennes, France. It is known for research contribution in the topics: Population & Catalysis. The organization has 18404 authors who have published 40374 publications receiving 995327 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results demonstrate the great plasticity of transformed hepatic progenitor cells and suggest that the transdifferentiation process could supply the pool of hepaticprogenitor cells, and highlight possible mechanisms by which trans Differentiation and proliferation of unipotent hepatocytes might cooperate in the development of mixed and differentiated tumors.

315 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Matthew Abernathy1  +953 moreInstitutions (106)
TL;DR: It is concluded that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.
Abstract: The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses $\gtrsim 30\, \text{M}_\odot$, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO/Virgo band for stochastic backgrounds (near 25 Hz), we predict $\Omega_\text{GW}(f=25 Hz) = 1.1_{-0.9}^{+2.7} \times 10^{-9}$ with 90\% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO/Virgo detectors operating at their projected final sensitivity.

314 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of research and development on rheological characteristics of nanofluids for their advanced heat transfer applications is performed and reported in this paper, which identifies the research anomaly and importance on this topic besides analysing rheology of nanophluids.
Abstract: A comprehensive review of research and development on rheological characteristics of nanofluids for their advanced heat transfer applications is performed and reported in this paper. It identifies the research anomaly and importance on this topic besides analysing rheology of nanofluids. Various classical and recently developed viscosity models for nanofluids are presented and discussed. Nanofluids are classified as metallic and nonmetallic types and research findings on this key property of available nanofluids are analyzed. Effects of several important factors such as concentration of nanoparticles and temperature on viscosity of each type of nanofluids have been explicitly reviewed. Results from various research groups and predictions from viscosity models are also compared and discussed in detail. Role and importance of the viscosity in connection with other thermal properties and parameters for their thermal management applications are highlighted. Furthermore, the research challenges and needs in this important area of nanofluids are also revealed.

314 citations

Journal ArticleDOI
TL;DR: The recent developments in electrophilic activation of enynes are discussed and it is shown that simple catalysts such as [Ru(3)(CO)(12)], PtCl(2), and cationic gold complexes are efficient precursors to promote the formation of functional polyclic compounds.
Abstract: Transformations of enynes in the presence of transition-metal catalysts have played an important role in the preparation of a variety of cyclic compounds. Recent developments in the activation of triple carbon–carbon bonds by electrophilic metal centers have provided a new entry to the selective synthesis of cyclopropane derivatives from enynes. The mechanisms of these reactions involve catalytic species with both ionic and cyclopropylcarbenoid character. This type of activation will undoubtedly be further developed for application to other unsaturated hydrocarbons and inspire new catalytic cascade reaction sequences. This Minireview discusses the recent developments in electrophilic activation of enynes and shows that simple catalysts such as [Ru3(CO)12], PtCl2, and cationic gold complexes are efficient precursors to promote the formation of functional polyclic compounds.

314 citations

Journal ArticleDOI
TL;DR: Kinetic data for the C-H bond activation of 2-phenylpyridine by Ru(II)(carboxylate)(2)(p-cymene) I (acetate) and I' (pivalate) are available for the first time and reveal an irreversible autocatalytic process catalyzed by the coproduct HOAc or HOPiv.
Abstract: Kinetic data for the C-H bond activation of 2-phenylpyridine by Ru(II)(carboxylate)(2)(p-cymene) I (acetate) and I' (pivalate) are available for the first time. They reveal an irreversible autocatalytic process catalyzed by the coproduct HOAc or HOPiv (acetonitrile, 27 °C). The overall reaction is indeed accelerated by the carboxylic acid coproduct and water. It is retarded by a base, in agreement with an autocatalytic process induced by HOAc or HOPiv that favors the dissociation of one carboxylate ligand from I and I' and consequently the ensuing complexation of 2-phenylpyridine (2-PhPy). The C-H bond activation initially delivers Ru(O(2)CR)(o-C(6)H(4)-Py)(p-cymene) A or A', containing one carboxylate ligand (OAc or OPiv, respectively). The overall reaction is accelerated by added acetates. Consequently, C-H bond activation (faster for acetate I than for pivalate I') proceeds via an intermolecular deprotonation of the C-H bond of the ligated 2-PhPy by the acetate or pivalate anion released from I or I', respectively. The 18e complexes A and A' easily dissociate, by displacement of the carboxylate by the solvent (also favored by the carboxylic acid), to give the same cationic complex B(+) {[Ru(o-C(6)H(4)-Py)(p-cymene)(MeCN)](+)}. Complex B(+) is reactive toward oxidative addition of phenyl iodide, leading to the diphenylated 2-pyridylbenzene.

313 citations


Authors

Showing all 18470 results

NameH-indexPapersCitations
Philippe Froguel166820118816
Bart Staels15282486638
Yi Yang143245692268
Geoffrey Burnstock141148899525
Shahrokh F. Shariat118163758900
Lutz Ackermann11666945066
Douglas R. MacFarlane11086454236
Elliott H. Lieb10751257920
Fu-Yuan Wu10736742039
Didier Sornette104129544157
Stefan Hild10345268228
Pierre I. Karakiewicz101120740072
Philippe Dubois101109848086
François Bondu10044069284
Jean-Michel Savéant9851733518
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

Pierre-and-Marie-Curie University
56.1K papers, 2.3M citations

95% related

University of Paris
174.1K papers, 5M citations

95% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202321
2022176
20212,655
20202,735
20192,670
20182,378