scispace - formally typeset
Search or ask a question

Showing papers by "University of Rennes published in 2014"


Journal ArticleDOI
TL;DR: A novel edge caching scheme based on the concept of content-centric networking or information-centric networks is proposed and evaluated, using trace-driven simulations to evaluate the performance of the proposed scheme and validate the various advantages of the utilization of caching content in 5G mobile networks.
Abstract: The demand for rich multimedia services over mobile networks has been soaring at a tremendous pace over recent years. However, due to the centralized architecture of current cellular networks, the wireless link capacity as well as the bandwidth of the radio access networks and the backhaul network cannot practically cope with the explosive growth in mobile traffic. Recently, we have observed the emergence of promising mobile content caching and delivery techniques, by which popular contents are cached in the intermediate servers (or middleboxes, gateways, or routers) so that demands from users for the same content can be accommodated easily without duplicate transmissions from remote servers; hence, redundant traffic can be significantly eliminated. In this article, we first study techniques related to caching in current mobile networks, and discuss potential techniques for caching in 5G mobile networks, including evolved packet core network caching and radio access network caching. A novel edge caching scheme based on the concept of content-centric networking or information-centric networking is proposed. Using trace-driven simulations, we evaluate the performance of the proposed scheme and validate the various advantages of the utilization of caching content in 5G mobile networks. Furthermore, we conclude the article by exploring new relevant opportunities and challenges.

1,098 citations


Journal ArticleDOI
David Brawand1, David Brawand2, Catherine E. Wagner3, Catherine E. Wagner4, Yang I. Li1, Milan Malinsky5, Milan Malinsky6, Irene Keller3, Shaohua Fan7, Oleg Simakov7, Alvin Yu Jin Ng8, Zhi Wei Lim8, Etienne Bezault9, Jason Turner-Maier2, Jeremy A. Johnson2, Rosa Alcazar10, Hyun Ji Noh2, Pamela Russell11, Bronwen Aken5, Jessica Alföldi2, Chris T. Amemiya12, Naoual Azzouzi13, Jean-François Baroiller, Frédérique Barloy-Hubler13, Aaron M. Berlin2, Ryan F. Bloomquist14, Karen L. Carleton15, Matthew A. Conte15, Helena D'Cotta, Orly Eshel, Leslie Gaffney2, Francis Galibert13, Hugo F. Gante16, Sante Gnerre2, Lucie Greuter3, Lucie Greuter4, Richard Guyon13, Natalie S. Haddad14, Wilfried Haerty1, Robert M Harris17, Hans A. Hofmann17, Thibaut Hourlier5, Gideon Hulata, David B. Jaffe2, Marcia Lara2, Alison P. Lee8, Iain MacCallum2, Salome Mwaiko4, Masato Nikaido18, Hidenori Nishihara18, Catherine Ozouf-Costaz19, David J. Penman20, Dariusz Przybylski2, Michaelle Rakotomanga13, Suzy C. P. Renn9, Filipe J. Ribeiro2, Micha Ron, Walter Salzburger16, Luis Sanchez-Pulido1, M. Emília Santos16, Steve Searle5, Ted Sharpe2, Ross Swofford2, Frederick J. Tan21, Louise Williams2, Sarah Young2, Shuangye Yin2, Norihiro Okada18, Norihiro Okada22, Thomas D. Kocher15, Eric A. Miska6, Eric S. Lander2, Byrappa Venkatesh8, Russell D. Fernald10, Axel Meyer7, Chris P. Ponting1, J. Todd Streelman14, Kerstin Lindblad-Toh2, Kerstin Lindblad-Toh23, Ole Seehausen4, Ole Seehausen3, Federica Di Palma2, Federica Di Palma24 
18 Sep 2014-Nature
TL;DR: This article found an excess of gene duplications in the East African lineage compared to Nile tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs.
Abstract: Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.

832 citations


David Brawand1, David Brawand2, Catherine E. Wagner3, Catherine E. Wagner4, Yang I. Li2, Milan Malinsky5, Milan Malinsky6, Irene Keller4, Shaohua Fan7, Oleg Simakov7, Alvin Yu Jin Ng8, Zhi Wei Lim8, Etienne Bezault9, Jason Turner-Maier1, Jeremy A. Johnson1, Rosa Alcazar10, Hyun Ji Noh1, Pamela Russell11, Bronwen Aken5, Jessica Alföldi1, Chris T. Amemiya12, Naoual Azzouzi13, Jean-François Baroiller, Frédérique Barloy-Hubler13, Aaron M. Berlin1, Ryan F. Bloomquist14, Karen L. Carleton15, Matthew A. Conte15, Helena D'Cotta, Orly Eshel, Leslie Gaffney1, Francis Galibert13, Hugo F. Gante16, Sante Gnerre1, Lucie Greuter4, Lucie Greuter3, Richard Guyon13, Natalie S. Haddad14, Wilfried Haerty2, Robert M Harris17, Hans A. Hofmann17, Thibaut Hourlier5, Gideon Hulata, David B. Jaffe1, Marcia Lara1, Alison P. Lee8, Iain MacCallum1, Salome Mwaiko3, Masato Nikaido18, Hidenori Nishihara18, Catherine Ozouf-Costaz19, David J. Penman20, Dariusz Przybylski1, Michaelle Rakotomanga13, Suzy C. P. Renn9, Filipe J. Ribeiro1, Micha Ron, Walter Salzburger16, Luis Sanchez-Pulido2, M. Emília Santos16, Steve Searle5, Ted Sharpe1, Ross Swofford1, Frederick J. Tan21, Louise Williams1, Sarah Young1, Shuangye Yin1, Norihiro Okada18, Norihiro Okada22, Thomas D. Kocher15, Eric A. Miska6, Eric S. Lander1, Byrappa Venkatesh8, Russell D. Fernald10, Axel Meyer7, Chris P. Ponting2, J. Todd Streelman14, Kerstin Lindblad-Toh1, Kerstin Lindblad-Toh23, Ole Seehausen3, Ole Seehausen4, Federica Di Palma24, Federica Di Palma1 
01 Sep 2014
TL;DR: It is concluded that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.
Abstract: Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.

666 citations


Journal ArticleDOI
10 Jul 2014-Nature
TL;DR: It was found that a first exposure of mice to LPS activated the ligand-operated transcription factor aryl hydrocarbon receptor and the hepatic enzyme tryptophan 2,3-dioxygenase, which provided an activating ligand to the former, to downregulate early inflammatory gene expression, pointing to a role for AhR in contributing to host fitness.
Abstract: Disease tolerance is the ability of the host to reduce the effect of infection on host fitness. Analysis of disease tolerance pathways could provide new approaches for treating infections and other inflammatory diseases. Typically, an initial exposure to bacterial lipopolysaccharide (LPS) induces a state of refractoriness to further LPS challenge (endotoxin tolerance). We found that a first exposure of mice to LPS activated the ligand-operated transcription factor aryl hydrocarbon receptor (AhR) and the hepatic enzyme tryptophan 2,3-dioxygenase, which provided an activating ligand to the former, to downregulate early inflammatory gene expression. However, on LPS rechallenge, AhR engaged in long-term regulation of systemic inflammation only in the presence of indoleamine 2,3-dioxygenase 1 (IDO1). AhR-complex-associated Src kinase activity promoted IDO1 phosphorylation and signalling ability. The resulting endotoxin-tolerant state was found to protect mice against immunopathology in Gram-negative and Gram-positive infections, pointing to a role for AhR in contributing to host fitness.

525 citations


Journal ArticleDOI
TL;DR: This work has shown that disocclusion in image-based rendering (IBR) of viewpoints different from those captured by the cameras can be removed in a context of editing.
Abstract: Image inpainting refers to the process of restoring missing or damaged areas in an image. This field of research has been very active over recent years, boosted by numerous applications: restoring images from scratches or text overlays, loss concealment in a context of impaired image transmission, object removal in a context of editing, or disocclusion in image-based rendering (IBR) of viewpoints different from those captured by the cameras. Although earlier work dealing with disocclusion has been published in [1], the term inpainting first appeared in [2] by analogy with a process used in art restoration.

518 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared uncertainty in evapotranspiration (ET) output from four land surface models (LSMs), Noah, Mosaic, VIC, and SAC in NLDAS-2, two remote sensing-based products, MODIS and AVHRR, and GRACE-inferred ET from a water budget with precipitation from PRISM, monitored runoff, and total water storage change (TWSC) from GRACE satellites.
Abstract: Proliferation of evapotranspiration (ET) products warrants comparison of these products. The study objective was to assess uncertainty in ET output from four land surface models (LSMs), Noah, Mosaic, VIC, and SAC in NLDAS-2, two remote sensing-based products, MODIS and AVHRR, and GRACE-inferred ET from a water budget with precipitation from PRISM, monitored runoff, and total water storage change (TWSC) from GRACE satellites. The three cornered hat method, which does not require a priori knowledge of the true ET value, was used to estimate ET uncertainties. In addition, TWSC or total water storage anomaly (TWSA) from GRACE was compared with water budget estimates of TWSC from a flux-based approach or TWSA from a storage-based approach. The analyses were conducted using data from three regions (humid-arid) in the South Central United States as case studies. Uncertainties in ET are lowest in LSM ET (∼5 mm/mo), moderate in MODIS or AVHRR-based ET (10–15 mm/mo), and highest in GRACE-inferred ET (20–30 mm/month). There is a trade-off between spatial resolution and uncertainty, with lower uncertainty in the coarser-resolution LSM ET (∼14 km) relative to higher uncertainty in the finer-resolution (∼1–8 km) RS ET. Root-mean-square (RMS) of uncertainties in water budget estimates of TWSC is about half of RMS of uncertainties in GRACE-derived TWSC for each of the regions. Future ET estimation should consider a hybrid approach that integrates strengths of LSMs and satellite-based products to constrain uncertainties.

394 citations


Journal ArticleDOI
TL;DR: In this article, a conceptual and quantitative framework for the causes of surface deformation in the Mediterranean is discussed, which can be outlined by two, almost symmetric, upper mantle convection cells.
Abstract: The Mediterranean offers a unique opportunity to study the driving forces of tectonic deformation within a complex mobile belt. Lithospheric dynamics are affected by slab rollback and collision of two large, slowly moving plates, forcing fragments of continental and oceanic lithosphere to interact. This paper reviews the rich and growing set of constraints from geological reconstructions, geodetic data, and crustal and upper mantle heterogeneity imaged by structural seismology. We proceed to discuss a conceptual and quantitative framework for the causes of surface deformation. Exploring existing and newly developed tectonic and numerical geodynamic models, we illustrate the role of mantle convection on surface geology. A coherent picture emerges which can be outlined by two, almost symmetric, upper mantle convection cells. The downwellings are found in the center of the Mediterranean and are associated with the descent of the Tyrrhenian and the Hellenic slabs. During plate convergence, these slabs migrated backward with respect to the Eurasian upper plate, inducing a return flow of the asthenosphere from the backarc regions towards the subduction zones. This flow can be found at large distance from the subduction zones, and is at present expressed in two upwellings beneath Anatolia and eastern Iberia. This convection system provides an explanation for the general pattern of seismic anisotropy in the Mediterranean, first-order Anatolia and Adria microplate kinematics, and may contribute to the high elevation of scarcely deformed areas such as Anatolia and Eastern Iberia. More generally, the Mediterranean is an illustration of how upper mantle, small-scale convection leads to intraplate deformation and complex plate boundary reconfiguration at the westernmost terminus of the Tethyan collision.

375 citations


Journal ArticleDOI
TL;DR: Normal reference ranges for cardiac chambers size obtained in a large group of healthy volunteers accounting for gender and age highlight the need for body size normalization that should be performed together with age-and gender-specific assessment for the most echocardiographic parameters.
Abstract: ..... A total of 734 (mean age: 45.8+ 13.3 years) healthy volunteers (320 men and 414 women) were enrolled at 22 collaborating institutions of the Normal Reference Ranges for Echocardiography (NORRE) study. A comprehensive echocardiographic examination was performed on all subjects following pre-defined protocols. There were no gender differences in age or cholesterol levels. Compared with men, women had significantly smaller body surface areas, and lower blood pressure. Quality of echocardiographic data sets was good to excellent in the majority of patients. Upper and lower reference limits were higher in men than in women. The reference values

299 citations


Journal ArticleDOI
TL;DR: It appears necessary to assess individual stress reactivity prospectively and separately at each trimester of pregnancy, to discriminate chronic from acute stress, and to take into consideration moderator variables such as past life events, sociocultural factors, predictability, social support and coping strategies.

297 citations


Journal ArticleDOI
15 Apr 2014-Leukemia
TL;DR: Plasma PD-L1 protein is a potent predicting biomarker in DLBCL and may indicate usefulness of alternative therapeutic strategies using PD-1 axis inhibitors and may be associated with a poorer prognosis for patients randomized within the R-CHOP arm.
Abstract: The dosage of soluble programmed cell death ligand 1 (sPD-L1) protein in the blood of adults with cancer has never been performed in a prospective patient cohort. We evaluated the clinical impact of sPD-L1 level measured at the time of diagnosis for newly diagnosed DLBCL. Soluble PD-L1 was measured in the plasma of 288 patients enrolled in a multicenter, randomized phase III trial that compared R-high-dose chemotherapy to R-CHOP. The median follow-up was 41.4 months. A cut-off of 1.52 ng/ml of PD-L1 level was determined and related to overall survival (OS). Patients with elevated sPD-L1 experienced a poorer prognosis with a three-year OS of 76% versus 89% (P<0.001). Considering clinical characteristics, the multivariate analysis retained this biomarker besides bone marrow involvement and abnormal lymphocyte-monocyte score as independently related to poor outcome. sPD-L1 was detectable in the plasma and not in the serum, found elevated in patients at diagnosis compared to healthy subjects and its level dropped back to normal value after CR. The intention-to-treat analysis showed that elevated sPD-L1 was associated with a poorer prognosis for patients randomized within the R-CHOP arm (P<0.001). Plasma PD-L1 protein is a potent predicting biomarker in DLBCL and may indicate usefulness of alternative therapeutic strategies using PD1 axis inhibitors.

282 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated whether hotspots are quantitatively and qualitatively threatened to the same order of magnitude by the combined effects of global changes, and they identified the Atlantic forest, Cape Floristic Region and Polynesia-Micronesia as particularly vulnerable to global changes.
Abstract: AimGlobal changes are predicted to have severe consequences for biodiversity; 34 biodiversity hotspots have become international priorities for conservation, with important efforts allocated to their preservation, but the potential effects of global changes on hotspots have so far received relatively little attention. We investigate whether hotspots are quantitatively and qualitatively threatened to the same order of magnitude by the combined effects of global changes. LocationWorldwide, in 34 biodiversity hotspots. MethodsWe quantify (1) the exposure of hotspots to climate change, by estimating the novelty of future climates and the disappearance of extant climates using climate dissimilarity analyses, (2) each hotspot's vulnerability to land modification and degradation by quantifying changes in land-cover variables over the entire habitat, and (3) the future suitability of distribution ranges of 100 of the world's worst invasive alien species', by characterizing the combined effects of climate and land-use changes on the future distribution ranges of these species. ResultsOur findings show that hotspots may experience an average loss of 31% of their area under analogue climate, with some hotspots more affected than others (e.g. Polynesia-Micronesia). The greatest climate change was projected in low-latitude hotspots. The hotspots were on average suitable for 17% of the considered invasive species. Hotspots that are mainly islands or groups of islands were disproportionally suitable for a high number of invasive species both currently and in the future. We also showed that hotspots will increase their area of pasture in the future. Finally, combining the three threats, we identified the Atlantic forest, Cape Floristic Region and Polynesia-Micronesia as particularly vulnerable to global changes. Main conclusionsGiven our estimates of hotspot vulnerability to changes, close monitoring is now required to evaluate the biodiversity responses to future changes and to test our projections against observations.

Journal ArticleDOI
TL;DR: This work investigates experimentally the role of status-seeking behavior in sabotage and cheating activities aiming at improving one’s performance ranking in a flat-wage environment and finds that average effort is higher when individuals are informed about their relative performance.
Abstract: Unethical behavior within organizations is not rare. We investigate experimentally the role of status-seeking behavior in sabotage and cheating activities aiming at improving one's performance ranking in a flat-wage environment. We find that average effort is higher when individuals are informed about their relative performance. However, ranking feedback also favors disreputable behavior. Some individuals do not hesitate to incur a cost to improve their rank by sabotaging others' work or by increasing artificially their own performance. Introducing sabotage opportunities has a strong detrimental effect on performance. Therefore, ranking incentives should be used with care. Inducing group identity discourages sabotage among peers but increases in-group rivalry. Data, as supplemental material, are available at http://dx.doi.org/10.1287/mnsc.2013.1747 . This paper was accepted by John List, behavioral economics.

Journal ArticleDOI
TL;DR: The mechanochromic phenomenon is thus explained by the disruption of the crystal packing within intermolecular interactions inducing shortening of the Cu-Cu bond distances in the [Cu4I4] cluster core and eventually modification of the emissive state.
Abstract: An in-depth study of mechanochromic and thermochromic luminescent copper iodide clusters exhibiting structural polymorphism is reported and gives new insights into the origin of the mechanochromic luminescence properties. The two different crystalline polymorphs exhibit distinct luminescence properties with one being green emissive and the other one being yellow emissive. Upon mechanical grinding, only one of the polymorphs exhibits great modification of its emission from green to yellow. Interestingly, the photophysical properties of the resulting partially amorphous crushed compound are closed to those of the other yellow polymorph. Comparative structural and optical analyses of the different phases including a solution of clusters permit us to establish a correlation between the Cu-Cu bond distances and the luminescence properties. In addition, the local structure of the [Cu4I4P4] cluster cores has been probed by (31)P and (65)Cu solid-state NMR analysis, which readily indicates that the grinding process modifies the phosphorus and copper atoms environments. The mechanochromic phenomenon is thus explained by the disruption of the crystal packing within intermolecular interactions inducing shortening of the Cu-Cu bond distances in the [Cu4I4] cluster core and eventually modification of the emissive state. These results definitely establish the role of cuprophilic interactions in the mechanochromism of copper iodide clusters. More generally, this study constitutes a step further into the understanding of the mechanism involved in the mechanochromic luminescent properties of metal-based compounds.

Journal ArticleDOI
TL;DR: Extensive experimental results on five datasets with pixel-wise ground truths demonstrate that the proposed saliency tree model consistently outperforms the state-of-the-art saliency models.
Abstract: This paper proposes a novel saliency detection framework termed as saliency tree. For effective saliency measurement, the original image is first simplified using adaptive color quantization and region segmentation to partition the image into a set of primitive regions. Then, three measures, i.e., global contrast, spatial sparsity, and object prior are integrated with regional similarities to generate the initial regional saliency for each primitive region. Next, a saliency-directed region merging approach with dynamic scale control scheme is proposed to generate the saliency tree, in which each leaf node represents a primitive region and each non-leaf node represents a non-primitive region generated during the region merging process. Finally, by exploiting a regional center-surround scheme based node selection criterion, a systematic saliency tree analysis including salient node selection, regional saliency adjustment and selection is performed to obtain final regional saliency measures and to derive the high-quality pixel-wise saliency map. Extensive experimental results on five datasets with pixel-wise ground truths demonstrate that the proposed saliency tree model consistently outperforms the state-of-the-art saliency models.

Journal ArticleDOI
TL;DR: Arguments for a genetic contribution to autism, based on updated family and twin studies, are examined and the possible role of epigenetic mechanisms reported in genetic disorders associated with ASD is discussed.
Abstract: Several studies support currently the hypothesis that autism etiology is based on a polygenic and epistatic model. However, despite advances in epidemiological, molecular and clinical genetics, the genetic risk factors remain difficult to identify, with the exception of a few chromosomal disorders and several single gene disorders associated with an increased risk for autism. Furthermore, several studies suggest a role of environmental factors in autism spectrum disorders (ASD). First, arguments for a genetic contribution to autism, based on updated family and twin studies, are examined. Second, a review of possible prenatal, perinatal and postnatal environmental risk factors for ASD are presented. Then, the hypotheses are discussed concerning the underlying mechanisms related to a role of environmental factors in the development of ASD in association with genetic factors. In particular, epigenetics as a candidate biological mechanism for gene X environment interactions is considered and the possible role of epigenetic mechanisms reported in genetic disorders associated with ASD is discussed. Furthermore, the example of in utero exposure to valproate provides a good illustration of epigenetic mechanisms involved in ASD and innovative therapeutic strategies. Epigenetic remodeling by environmental factors opens new perspectives for a better understanding, prevention and early therapeutic intervention of ASD.

Journal ArticleDOI
TL;DR: New evidence is reported that intraspecific variability can be a more important driver of the short-term functional response of plant communities following an extreme drought.
Abstract: Climate change is expected to increase the magnitude and the frequency of extreme climatic events such as droughts. Better understanding how plant communities will respond to these droughts is a major challenge. We expect the response to be a shift in functional trait values resulting from both species turnover and intraspecific trait variability, but little research has addressed the relative contribution of both components. We analysed the short-term functional response of subalpine grassland communities to a simulated drought by focusing on four leaf traits (LDMC: leaf dry matter content, SLA: specific leaf area, LNC: leaf nitrogen concentration and LCC: leaf carbon concentration). After evaluating species turnover and intraspecific variability separately, we determined their relative contribution in the community functional response to drought, reflected by changes in community-weighted mean traits. We found significant species turnover and intraspecific variability, as well as significant changes in community-weighted mean for most of the traits. The relative contribution of intraspecific variability to the changes in community mean traits was more important (42-99%) than the relative contribution of species turnover (1-58%). Intraspecific variability either amplified (for LDMC, SLA and LCC) or dampened (for LNC) the community functional response mediated by species turnover. We demonstrated that the small contribution of species turnover to the changes in community mean LDMC and LCC was explained by a lack of covariation between species turnover and interspecific trait differences.Synthesis. These results highlight the need for a better consideration of intraspecific variability to understand and predict the effect of climate change on plant communities. While both species turnover and intraspecific variability can be expected following an extreme drought, we report new evidence that intraspecific variability can be a more important driver of the short-term functional response of plant communities.

Journal ArticleDOI
TL;DR: Frailty is a frequent occurrence and is independently associated with increased ICU and 6-month mortalities, and the CFS predicts outcomes more effectively than the commonly used ICU illness scores.
Abstract: Frailty is a recent concept used for evaluating elderly individuals. Our study determined the prevalence of frailty in intensive care unit (ICU) patients and its impact on the rate of mortality. A multicenter, prospective, observational study performed in four ICUs in France included 196 patients aged ≥65 years hospitalized for >24 h during a 6-month study period. Frailty was determined using the frailty phenotype (FP) and the clinical frailty score (CFS). The patients were separated as follows: FP score <3 or ≥3 and CFS <5 or ≥5. Frailty was observed in 41 and 23 % of patients on the basis of an FP score ≥3 and a CFS ≥5, respectively. At admission to the ICU, the Simplified Acute Physiology Score II (SAPS II) and Sequential Organ Failure Assessment (SOFA) scores did not differ between the frail and nonfrail patients. In the multivariate analysis, the risk factors for ICU mortality were FP score ≥3 [hazard ratio (HR), 3.3; 95 % confidence interval (CI), 1.6–6.6; p < 0.001], male gender (HR, 2.4; 95 % CI, 1.1–5.3; p = 0.026), cardiac arrest before admission (HR, 2.8; 95 % CI, 1.1–7.4; p = 0.036), SAPS II score ≥46 (HR, 2.6; 95 % CI, 1.2–5.3; p = 0.011), and brain injury before admission (HR, 3.5; 95 % CI, 1.6–7.7; p = 0.002). The risk factors for 6-month mortality were a CFS ≥5 (HR, 2.4; 95 % CI, 1.49–3.87; p < 0.001) and a SOFA score ≥7 (HR, 2.2; 95 % CI, 1.35–3.64; p = 0.002). An increased CFS was associated with significant incremental hospital and 6-month mortalities. Frailty is a frequent occurrence and is independently associated with increased ICU and 6-month mortalities. Notably, the CFS predicts outcomes more effectively than the commonly used ICU illness scores.

Journal ArticleDOI
TL;DR: The Compassionate Use of Protease Inhibitors in Viral C Cirrhosis (COCIR) study as mentioned in this paper investigated the effectiveness of the protease inhibitors peginterferon and ribavirin in treatment-experienced patients with hepatitis C virus (HCV) genotype 1 infection and cirrhosis.

Journal ArticleDOI
TL;DR: This work examines the reliability of using eDNA to detect the presence of an invasive freshwater crustacean species, the red swamp crayfish Procambarus clarkii, and develops a combination of environmental DNA (eDNA) and conventional trapping methods to monitor the invasion.
Abstract: 1. The introduction of non-native species is a major threat to biodiversity. While eradication programs of well-established invaders are costly and hazardous for non-target species, the early detection of a non-native species at low density is critical for preventing biological invasions in recipient ecosystems. Recent studies reveal that environmental DNA (eDNA) is a powerful tool for detecting target species in aquatic ecosystems, but these studies focus mostly on fish and amphibians.2. We examine the reliability of using eDNA to detect the presence of an invasive freshwater crustacean species, the red swamp crayfish Procambarus clarkii. Species-specific primers and probes were designed; their specificity was tested using in silico PCR simulations and against tissues of other crayfish species. Limits of detection and quantification were specified for the target DNA sequence by means of quantitative PCR amplifications on dilution series of known amount of P. clarkii DNA.3. The method was applied to water samples collected in 158 ponds in a French Nature Park, and results were compared to a traditional method using food-baited funnel traps. Environmental DNA had a better detection efficiency but predominantly led to divergent results compared with the trapping method. While habitat features partly explained the failure of crayfish detection by trapping, detection by eDNA was problematic at low crayfish abundances. When P. clarkii was detected, the estimated concentrations of crayfish DNA in water samples were always below the limit of quantification for the target DNA sequence.4. Synthesis and applications. The combination of environmental DNA (eDNA) and conventional trapping methods is recommended to monitor the invasion by P. clarkii in small waterbodies such as ponds. However, the risk of mortality for non-target species, notably amphibians, has to be carefully evaluated before large-scale deployment of traps. Contrary to fish and amphibians, a low amount of extracellular DNA in water is suspected to be the major limitation for crayfish detection by molecular approaches. Current advancements in PCR technology, together with optimization of the water sampling method, promise upcoming developments of eDNA detection for aquatic invertebrate species.

Journal ArticleDOI
TL;DR: An interdisciplinary approach to the quantitative and qualitative characterization of hydraulic interactions between rivers and shallow aquifers, wherein it outlines the advantages of coupling groundwater modeling with biological markers.
Abstract: Future climate changes and the resulting modifications in anthropogenic activities will alter the interactions between rivers and groundwater. The quantification of these hydraulic interactions is absolutely necessary for achieving sustainable water use and requires accurate analytical methodologies. This report proposes an interdisciplinary approach to the quantitative and qualitative characterization of hydraulic interactions between rivers and shallow aquifers, wherein it outlines the advantages of coupling groundwater modeling with biological markers. As a first step, we built independent diagnostic maps of hydrological exchanges at the sector scale on the basis of hydrogeological modeling and biological indicators. In a second step, these maps were compared to provide a quantitative and qualitative understanding of exchanges between groundwater and surface water. This comparison significantly improved the calibration of groundwater models through a better assessment of boundary zones. Our approach enabled us to identify the conditions under which it could be possible to use biological indicators instead of a large set of piezometric measures. The integration of such combined tools in a future decision support system will assist governmental authorities in proposing appropriate long-term water policies for the preservation of groundwater resources, such as for supplying potable water and/or mitigating pollution risks.

Journal ArticleDOI
01 May 2014
TL;DR: A review of the literature dealing with surgical process modelling allows a greater understanding of the SPM field to be gained and introduces future related prospects.
Abstract: Surgery is continuously subject to technological and medical innovations that are transforming daily surgical routines. In order to gain a better understanding and description of surgeries, the field of surgical process modelling (SPM) has recently emerged. The challenge is to support surgery through the quantitative analysis and understanding of operating room activities. Related surgical process models can then be introduced into a new generation of computer-assisted surgery systems. In this paper, we present a review of the literature dealing with SPM. This methodological review was obtained from a search using Google Scholar on the specific keywords: “surgical process analysis”, “surgical process model” and “surgical workflow analysis”. This paper gives an overview of current approaches in the field that study the procedural aspects of surgery. We propose a classification of the domain that helps to summarise and describe the most important components of each paper we have reviewed, i.e., acquisition, modelling, analysis, application and validation/evaluation. These five aspects are presented independently along with an exhaustive list of their possible instantiations taken from the studied publications. This review allows a greater understanding of the SPM field to be gained and introduces future related prospects.

Journal ArticleDOI
TL;DR: In this article, the authors measured the asymptotic period spacing for 1178 stars at various evolutionary stages and drew seismic evolutionary tracks with the combination of the frequency and period spacings.
Abstract: Context. The detection of oscillations with a mixed character in subgiants and red giants allows us to probe the physical conditions in their cores. Aims. With these mixed modes, we aim at determining seismic markers of stellar evolution. Methods. Kepler asteroseismic data were selected to map various evolutionary stages and stellar masses. Seismic evolutionary tracks were then drawn with the combination of the frequency and period spacings. Results. We measured the asymptotic period spacing for 1178 stars at various evolutionary stages. This allows us to monitor stellar evolution from the main sequence to the asymptotic giant branch and draw seismic evolutionary tracks. We present clear quantified asteroseismic definitions that characterize the change in the evolutionary stages, in particular the transition from the subgiant stage to the early red giant branch, and the end of the horizontal branch. Conclusions. The seismic information is so precise that clear conclusions can be drawn independently of evolution models. The quantitative seismic information can now be used for stellar modeling, especially for studying the energy transport in the heliumburning core or for specifying the inner properties of stars entering the red or asymptotic giant branches. Modeling will also allow us to study stars that are identified to be in the helium-subflash stage, high-mass stars either arriving or quitting the secondary clump, or stars that could be in the blue-loop stage.

Journal ArticleDOI
TL;DR: In this work, concepts of effective mass and quantum well are carefully investigated and their applicability to 2D HOPs is discussed, finding that for ultrathin layers, the effective-mass model fails and an alternative method is suggested in which 2DHOPs are treated as composite materials, and a first-principles approach to the calculation of band offsets.
Abstract: Layered hybrid organic perovskites (HOPs) structures are a class of low-cost two-dimensional materials that exhibit outstanding optical properties, related to dielectric and quantum confinement effects. Whereas modeling and understanding of quantum confinement are well developed for conventional semiconductors, such knowledge is still lacking for 2D HOPs. In this work, concepts of effective mass and quantum well are carefully investigated and their applicability to 2D HOPs is discussed. For ultrathin layers, the effective-mass model fails. Absence of superlattice coupling and importance of non-parabolicity effects prevents the use of simple empirical models based on effective masses and envelope function approximations. An alternative method is suggested in which 2D HOPs are treated as composite materials, and a first-principles approach to the calculation of band offsets is introduced. These findings might also be relevant for other classes of layered 2D functional materials.

Journal ArticleDOI
TL;DR: An ultrahigh coupling efficiency (CE) fully etched apodized grating coupler on the silicon-on-insulator (SOI) platform using subwavelength photonic crystals and bonded aluminum mirror is designed and fabricated.
Abstract: We design and fabricate an ultrahigh coupling efficiency (CE) fully etched apodized grating coupler on the silicon-on-insulator (SOI) platform using subwavelength photonic crystals and bonded aluminum mirror. Fabrication error sensitivity and coupling angle dependence are experimentally investigated. A record ultrahigh CE of −0.58 dB with a 3 dB bandwidth of 71 nm and low back reflection are demonstrated.

Journal ArticleDOI
12 Aug 2014-PLOS ONE
TL;DR: The results show that the three studied factors have a dramatic impact on the final result as strong discrepancies were evidenced depending on the methods used, and suggest that the combination of weighted Minimum Norm Estimator and the Phase Synchronization methods applied on High-Resolution EEG in beta/gamma bands provides the best performance in terms of topological distance.
Abstract: The recent past years have seen a noticeable increase of interest for electroencephalography (EEG) to analyze functional connectivity through brain sources reconstructed from scalp signals. Although considerable advances have been done both on the recording and analysis of EEG signals, a number of methodological questions are still open regarding the optimal way to process the data in order to identify brain networks. In this paper, we analyze the impact of three factors that intervene in this processing: i) the number of scalp electrodes, ii) the combination between the algorithm used to solve the EEG inverse problem and the algorithm used to measure the functional connectivity and iii) the frequency bands retained to estimate the functional connectivity among neocortical sources. Using High-Resolution (hr) EEG recordings in healthy volunteers, we evaluated these factors on evoked responses during picture recognition and naming task. The main reason for selection this task is that a solid literature background is available about involved brain networks (ground truth). From this a priori information, we propose a performance criterion based on the number of connections identified in the regions of interest (ROI) that belong to potentially activated networks. Our results show that the three studied factors have a dramatic impact on the final result (the identified network in the source space) as strong discrepancies were evidenced depending on the methods used. They also suggest that the combination of weighted Minimum Norm Estimator (wMNE) and the Phase Synchronization (PS) methods applied on High-Resolution EEG in beta/gamma bands provides the best performance in term of topological distance between the identified network and the expected network in the above-mentioned cognitive task.

Journal ArticleDOI
TL;DR: Immunosuppressed patients without AIDS had longer time to treatment and a higher rate of death than did patients with AIDS.
Abstract: Pneumocystis jirovecii pneumonia (PCP) in patients without AIDS is increasingly common. We conducted a prospective cohort study of consecutive patients with proven PCP; of 544 patients, 223 (41%) had AIDS (AIDS patients) and 321 (59%) had other immunosuppressive disorders (non-AIDS patients). Fewer AIDS than non-AIDS patients required intensive care or ventilation, and the rate of hospital deaths—17.4% overall—was significantly lower for AIDS versus non-AIDS patients (4% vs. 27%; p<0.0001). Multivariable analysis showed the odds of hospital death increased with older age, receipt of allogeneic bone marrow transplant, immediate use of oxygen, need for mechanical ventilation, and longer time to treatment; HIV-positive status or receipt of a solid organ transplant decreased odds for death. PCP is more often fatal in non-AIDS patients, but time to diagnosis affects survival and is longer for non-AIDS patients. Clinicians must maintain a high index of suspicion for PCP in immunocompromised patients who do not have AIDS.

Journal ArticleDOI
TL;DR: Experimental results on two public datasets demonstrate that the proposed model outperforms six state-of-the-art spatiotemporal saliency models in terms of both saliency detection and human fixation prediction.
Abstract: This paper proposes a superpixel-based spatiotemporal saliency model for saliency detection in videos. Based on the superpixel representation of video frames, motion histograms and color histograms are extracted at the superpixel level as local features and frame level as global features. Then, superpixel-level temporal saliency is measured by integrating motion distinctiveness of superpixels with a scheme of temporal saliency prediction and adjustment, and superpixel-level spatial saliency is measured by evaluating global contrast and spatial sparsity of superpixels. Finally, a pixel-level saliency derivation method is used to generate pixel-level temporal and spatial saliency maps, and an adaptive fusion method is exploited to integrate them into the spatiotemporal saliency map. Experimental results on two public datasets demonstrate that the proposed model outperforms six state-of-the-art spatiotemporal saliency models in terms of both saliency detection and human fixation prediction.

Journal ArticleDOI
TL;DR: These photo-/electro-cooperative nanodevices can be applied as resettable electronic logic gates for Boolean computing, such as a two-input OR and a three-input AND-OR, and demonstrates the possibility to develop multifunctional molecular devices by rational chemical design.
Abstract: Individual molecules have been demonstrated to exhibit promising applications as functional components in the fabrication of computing nanocircuits. Based on their advantage in chemical tailorability, many molecular devices with advanced electronic functions have been developed, which can be further modulated by the introduction of external stimuli. Here, orthogonally modulated molecular transport junctions are achieved via chemically fabricated nanogaps functionalized with dithienylethene units bearing organometallic ruthenium fragments. The addressable and stepwise control of molecular isomerization can be repeatedly and reversibly completed with a judicious use of the orthogonal optical and electrochemical stimuli to reach the controllable switching of conductivity between two distinct states. These photo-/electro-cooperative nanodevices can be applied as resettable electronic logic gates for Boolean computing, such as a two-input OR and a three-input AND-OR. The proof-of-concept of such logic gates demonstrates the possibility to develop multifunctional molecular devices by rational chemical design.

Journal ArticleDOI
TL;DR: In this paper, the effect of low nanoparticle volume fraction, ranging from 0.0055% to 0.278%, on density, thermal conductivity and viscosity of nanofluids is investigated for temperature range of 20 −40°C.

Journal ArticleDOI
TL;DR: It is concluded that NFC and HG hydrogels expedite the hepatic differentiation of HepaRG liver progenitor cells better than the standard 2D culture environment as improved cell morphology, expression and localization of hepatic markers, metabolic activity and vectorial transport are shown.