scispace - formally typeset
Search or ask a question
Institution

University of Rennes

EducationRennes, France
About: University of Rennes is a education organization based out in Rennes, France. It is known for research contribution in the topics: Population & Catalysis. The organization has 18404 authors who have published 40374 publications receiving 995327 citations.


Papers
More filters
Journal ArticleDOI
23 May 2018-Nature
TL;DR: It is demonstrated that urban communities generally consist of smaller species, and that the general trend towards smaller-sized species is overruled by filtering for larger species when there is positive covariation between size and dispersal, which can mitigate the low connectivity of ecological resources in urban settings.
Abstract: Body size is intrinsically linked to metabolic rate and life-history traits, and is a crucial determinant of food webs and community dynamics1,2. The increased temperatures associated with the urban-heat-island effect result in increased metabolic costs and are expected to drive shifts to smaller body sizes 3 . Urban environments are, however, also characterized by substantial habitat fragmentation 4 , which favours mobile species. Here, using a replicated, spatially nested sampling design across ten animal taxonomic groups, we show that urban communities generally consist of smaller species. In addition, although we show urban warming for three habitat types and associated reduced community-weighted mean body sizes for four taxa, three taxa display a shift to larger species along the urbanization gradients. Our results show that the general trend towards smaller-sized species is overruled by filtering for larger species when there is positive covariation between size and dispersal, a process that can mitigate the low connectivity of ecological resources in urban settings 5 . We thus demonstrate that the urban-heat-island effect and urban habitat fragmentation are associated with contrasting community-level shifts in body size that critically depend on the association between body size and dispersal. Because body size determines the structure and dynamics of ecological networks 1 , such shifts may affect urban ecosystem function. The urban-heat-island effect drives community-level shifts towards smaller body sizes; however, habitat fragmentation caused by urbanization favours larger body sizes in species with positive size–dispersal links.

175 citations

Journal ArticleDOI
TL;DR: In this paper, des conditions suffisantes pour que la martingale locale ℰ (M) definie par C. Doleans-Dade soit une Martingale uniformement integrable.
Abstract: Nous donnons des conditions suffisantes pour que la martingale localeℰ (M) definie par C. Doleans-Dade soit une martingale uniformement integrable. Le lien est etabli avec la martingale locale exponentielle α(N, z, Μ) de Kunita-Watanabe, ce qui permet de generaliser un theoreme de Novikov.

175 citations

Journal ArticleDOI
TL;DR: An overview of the different types of virus-aphid relationships, state-of-the-art knowledge of the molecular processes underlying these interactions, and the remaining black boxes waiting to be opened in the near future is presented.

175 citations

Journal ArticleDOI
TL;DR: This new dynamical picture of intermittency provides a direct link between the microscale flow, its intermittent properties, and non-Fickian dispersion.
Abstract: We study the intermittency of fluid velocities in porous media and its relation to anomalous dispersion. Lagrangian velocities measured at equidistant points along streamlines are shown to form a spatial Markov process. As a consequence of this remarkable property, the dispersion of fluid particles can be described by a continuous time random walk with correlated temporal increments. This new dynamical picture of intermittency provides a direct link between the microscale flow, its intermittent properties, and non-Fickian dispersion.

175 citations

Journal ArticleDOI
TL;DR: Magneto-optical spectroscopy shows that the dark exciton state in single formamidinium lead bromide perovskite nanocrystals is located below the bright exciton triplet, which explains the intense brightness of the nanoparticles.
Abstract: Lead halide perovskites have emerged as promising new semiconductor materials for high-efficiency photovoltaics, light-emitting applications and quantum optical technologies. Their luminescence properties are governed by the formation and radiative recombination of bound electron-hole pairs known as excitons, whose bright or dark character of the ground state remains unknown and debated. While symmetry analysis predicts a singlet non-emissive ground exciton topped with a bright exciton triplet, it has been predicted that the Rashba effect may reverse the bright and dark level ordering. Here, we provide the direct spectroscopic signature of the dark exciton emission in the low-temperature photoluminescence of single formamidinium lead bromide perovskite nanocrystals under magnetic fields. The dark singlet is located several millielectronvolts below the bright triplet, in fair agreement with an estimation of the long-range electron-hole exchange interaction. Nevertheless, these perovskites display an intense luminescence because of an extremely reduced bright-to-dark phonon-assisted relaxation.

175 citations


Authors

Showing all 18470 results

NameH-indexPapersCitations
Philippe Froguel166820118816
Bart Staels15282486638
Yi Yang143245692268
Geoffrey Burnstock141148899525
Shahrokh F. Shariat118163758900
Lutz Ackermann11666945066
Douglas R. MacFarlane11086454236
Elliott H. Lieb10751257920
Fu-Yuan Wu10736742039
Didier Sornette104129544157
Stefan Hild10345268228
Pierre I. Karakiewicz101120740072
Philippe Dubois101109848086
François Bondu10044069284
Jean-Michel Savéant9851733518
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

Pierre-and-Marie-Curie University
56.1K papers, 2.3M citations

95% related

University of Paris
174.1K papers, 5M citations

95% related

École Normale Supérieure
99.4K papers, 3M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202321
2022176
20212,655
20202,735
20192,670
20182,378