scispace - formally typeset
Search or ask a question
Institution

Vrije Universiteit Brussel

EducationBrussels, Belgium
About: Vrije Universiteit Brussel is a education organization based out in Brussels, Belgium. It is known for research contribution in the topics: Population & Context (language use). The organization has 14295 authors who have published 38258 publications receiving 1203970 citations. The organization is also known as: VUB.


Papers
More filters
Journal ArticleDOI
TL;DR: This work introduces a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback and proves that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing.
Abstract: Novel methods for information processing are highly desired in our information-driven society. Inspired by the brain's ability to process information, the recently introduced paradigm known as 'reservoir computing' shows that complex networks can efficiently perform computation. Here we introduce a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback. Through an electronic implementation, we experimentally and numerically demonstrate excellent performance in a speech recognition benchmark. Complementary numerical studies also show excellent performance for a time series prediction benchmark. These results prove that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing. This finding paves the way to feasible and resource-efficient technological implementations of reservoir computing.

1,121 citations

Journal ArticleDOI
08 Apr 2010-PLOS ONE
TL;DR: Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones are the most threatened because they are often the first cleared for development of aquaculture and agriculture.
Abstract: Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16%) are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced.

1,108 citations

Journal ArticleDOI
TL;DR: These findings highlight the relevance of classical concepts from the physics of polymeric phase transitions for understanding the assembly of intracellular membrane-less compartments, and challenge the challenge of applying these concepts given the heteropolymeric nature of protein sequences, the complex intrACEllular environment, and non-equilibrium features intrinsic to cells.
Abstract: Intracellular organelles are either membrane-bound vesicles or membrane-less compartments that are made up of proteins and RNA. These organelles play key biological roles, by compartmentalizing the cell to enable spatiotemporal control of biological reactions. Recent studies suggest that membrane-less intracellular compartments are multicomponent viscous liquid droplets that form via phase separation. Proteins that have an intrinsic tendency for being conformationally heterogeneous seem to be the main drivers of liquid–liquid phase separation in the cell. These findings highlight the relevance of classical concepts from the physics of polymeric phase transitions for understanding the assembly of intracellular membrane-less compartments. However, applying these concepts is challenging, given the heteropolymeric nature of protein sequences, the complex intracellular environment, and non-equilibrium features intrinsic to cells. This provides new opportunities for adapting established theories and for the emergence of new physics. The internal structure of cells is organized into compartments, many of which lack a confining membrane and instead resemble viscous liquid droplets. Evidence is mounting that these compartments form via spontaneous phase transitions. The internal structure of cells is organized into compartments, many of which lack a confining membrane and instead resemble viscous liquid droplets. Evidence is mounting that these compartments form via spontaneous phase transitions.

1,089 citations

Journal ArticleDOI
Patricio Godoy, Nicola J. Hewitt, Ute Albrecht1, Melvin E. Andersen, Nariman Ansari2, Sudin Bhattacharya, Johannes G. Bode1, Jennifer Bolleyn3, Christoph Borner4, J Böttger5, Albert Braeuning, Robert A. Budinsky6, Britta Burkhardt7, Neil R. Cameron8, Giovanni Camussi9, Chong Su Cho10, Yun Jaie Choi10, J. Craig Rowlands6, Uta Dahmen11, Georg Damm12, Olaf Dirsch11, María Teresa Donato13, Jian Dong, Steven Dooley14, Dirk Drasdo15, Dirk Drasdo5, Dirk Drasdo16, Rowena Eakins17, Karine Sá Ferreira4, Valentina Fonsato9, Joanna Fraczek3, Rolf Gebhardt5, Andrew Gibson17, Matthias Glanemann12, Christopher E. Goldring17, María José Gómez-Lechón, Geny M. M. Groothuis18, Lena Gustavsson19, Christelle Guyot, David Hallifax20, Seddik Hammad21, Adam S. Hayward8, Dieter Häussinger1, Claus Hellerbrand22, Philip Hewitt23, Stefan Hoehme5, Hermann-Georg Holzhütter12, J. Brian Houston20, Jens Hrach, Kiyomi Ito24, Hartmut Jaeschke25, Verena Keitel1, Jens M. Kelm, B. Kevin Park17, Claus Kordes1, Gerd A. Kullak-Ublick, Edward L. LeCluyse, Peng Lu, Jennifer Luebke-Wheeler, Anna Lutz4, Daniel J. Maltman, Madlen Matz-Soja5, Patrick D. McMullen, Irmgard Merfort4, Simon Messner, Christoph Meyer14, Jessica Mwinyi, Dean J. Naisbitt17, Andreas K. Nussler7, Peter Olinga18, Francesco Pampaloni2, Jingbo Pi, Linda J. Pluta, Stefan Przyborski8, Anup Ramachandran25, Vera Rogiers3, Cliff Rowe17, Celine Schelcher26, Kathrin Schmich4, Michael Schwarz, Bijay Singh10, Ernst H. K. Stelzer2, Bruno Stieger, Regina Stöber, Yuichi Sugiyama, Ciro Tetta27, Wolfgang E. Thasler26, Tamara Vanhaecke3, Mathieu Vinken3, Thomas S. Weiss28, Agata Widera, Courtney G. Woods, Jinghai James Xu29, Kathy Yarborough, Jan G. Hengstler 
TL;DR: This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro and how closely hepatoma, stem cell and iPS cell–derived hepatocyte-like-cells resemble real hepatocytes.
Abstract: This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.

1,085 citations

Journal ArticleDOI
TL;DR: Older adults have a 5- to 8-fold increased risk for all-cause mortality during the first 3 months after hip fracture, and excess annual mortality after hip fractures is higher in men than in women.
Abstract: Interest is increasing in quantifying the magnitude and duration of excess mortality after hip fractures for use in cost-effectiveness analyses of strategies for hip fracture prevention (1-3). Although an increased risk for death after hip fracture is well established in both women and men, it is unclear whether this excess mortality persists over time (4). Although almost all studies have reported an increased risk for death in the first 3 to 6 months after injury, results from long-term (5- to 10-year) follow-up have been conflicting, with some studies finding persistent excess mortality and others finding none (5-8). These conflicting results have several potential causes, including differences in control populations, difficulties in comparing crude and adjusted mortality statistics, and differences in model covariates (4-6, 9-16). At longer follow-up, the number of patients at risk and therefore the number of events (deaths) provide limited statistical power (17). An additional source of variability occurs in time-to-event (survival) analyses when the mortality risk is not constant over time and follow-up varies across the cohorts (17, 18). Because of these factors, reported hazard estimates are varied and have wide CIs, limiting any inferences physicians or public health policymakers can make. Further drawbacks include limited sample size, low frequency of observations, lack of stratification by sex, and reporting relative rather than absolute risks (17, 19, 20). We summarize longitudinal evidence about the magnitude and duration of excess mortality after hip fracture in older men and women.

1,084 citations


Authors

Showing all 14460 results

NameH-indexPapersCitations
D. M. Strom1763167194314
Christopher M. Dobson1501008105475
Dario Bisello1402005107859
Giorgio Maggi135132390270
Jörg P. Rachen13340094766
Pascal Vanlaer133127091850
Freya Blekman133138889808
Jorgen D'Hondt132125789685
Tae Jeong Kim132142093959
Xavier Janssen132130986860
Matthias Ulrich Mozer131118587709
Valery Zhukov129125583330
Stephanie Beauceron129121386374
Steven Lowette128109478876
Yen-Jie Lee128124782542
Network Information
Related Institutions (5)
Utrecht University
139.3K papers, 6.2M citations

95% related

Katholieke Universiteit Leuven
176.5K papers, 6.2M citations

95% related

University of Amsterdam
140.8K papers, 5.9M citations

94% related

McGill University
162.5K papers, 6.9M citations

93% related

Boston University
119.6K papers, 6.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023124
2022296
20212,413
20202,195
20192,169
20182,125