scispace - formally typeset
Open AccessJournal ArticleDOI

Binary group III-nitride based heterostructures: band offsets and transport properties

TLDR
In this paper, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nodes-based opto-electronic devices.
Abstract
In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.

read more

Citations
More filters

Valence band splittings and band offsets of AlN, GaN and InN.

Su-Huai Wei, +1 more
TL;DR: In this article, first principles electronic structure calculations on wurtzite AlN, GaN, and InN reveal crystal field splitting parameters ΔCF of −217, 42, and 41 meV, respectively.
Journal ArticleDOI

Graphene coupled TiO2 photocatalysts for environmental applications: A review.

TL;DR: In this paper, the fundamental mechanism and interfacial charge transfer dynamics in TiO2/graphene nanocomposites are reviewed and the design strategies of various graphene-based hybrids are highlighted along with some specialized synthetic routes adopted to attain preferred properties.
Journal ArticleDOI

Semiconductor Electrode Materials Applied in Photoelectrocatalytic Wastewater Treatment—an Overview

Elzbieta Kusmierek
- 18 Apr 2020 - 
TL;DR: In this article, a general overview of the semiconductor materials applied as photoelectrodes in the treatment of various pollutants is presented, with a particular focus on the main experimental conditions employed in the photo-electrocatalytic degradation of various contaminants.
Journal ArticleDOI

Graded-Index Separate Confinement Heterostructure AlGaN Nanowires: Toward Ultraviolet Laser Diodes Implementation

TL;DR: In this article, a novel nanowire structure adopting a graded-index separate confinement heterostructure (GRINSCH) in which the active region is sandwiched between two compositionally graded AlGaN layers, namely, a GRINSCH diode, is proposed.
Journal ArticleDOI

A Review on Chemiresistive ZnO Gas Sensors

TL;DR: In this paper , the morphology and structure of these materials influence on the sensor response, and challenges and future perspectives for ZnO chemiresistive sensors are also discussed, focusing on how the morphology of the materials can influence on sensor response.
References
More filters
Journal ArticleDOI

Band offsets in cubic GaN/AlN superlattices

TL;DR: The presently unknown band offset in nonpolar cubic GaN/AlN superlattices is investigated by inter-sub-band and interband spectroscopies as well as ab initio calculations.
Journal ArticleDOI

Metallization contacts to nonpolar a-plane n-type GaN

TL;DR: In this paper, the electrical characteristics of metallization contacts to nonpolar a-plane and polar c-plane n-type GaN have been investigated and it was shown that the Schottky barrier height of the a plane GaN is lower than that of the c plane by 0.24 and 0.30eV, respectively.
Journal ArticleDOI

Insulator-GaN interface structures formed by plasma-assisted chemical vapor deposition

TL;DR: In this article, a minimum value of interface state density of 5×10 10 cm −2 eV −1 was obtained for the Si3N4/n-GaN structures formed by ECR-PCVD with a combination of NH4OH treatment and N2 plasma treatment.
Book ChapterDOI

Semiconductor Heterojunction Interfaces: Nontransitivity of Energy-band Discontiuities

TL;DR: In this article, the sum of the valence-band discontinuities for these intefaces is 0.64 ± 0.05 eV, a large deviation from the zero sum expected by transitivity.
Journal ArticleDOI

Electrically excited infrared emission from InN nanowire transistors.

TL;DR: In this article, the authors reported the generation of IR emission by impact excitation of carriers under a high electrical field, and the size of the fundamental band gap of a single InN nanowire transistor by measuring its emission spectra, showing that the electron accumulation layer at the InN NW surface forms a surface plasmon that couples to and enhances radiative electron-hole pair recombination.
Related Papers (5)