scispace - formally typeset
Open AccessJournal ArticleDOI

Binary group III-nitride based heterostructures: band offsets and transport properties

TLDR
In this paper, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nodes-based opto-electronic devices.
Abstract
In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.

read more

Citations
More filters

Valence band splittings and band offsets of AlN, GaN and InN.

Su-Huai Wei, +1 more
TL;DR: In this article, first principles electronic structure calculations on wurtzite AlN, GaN, and InN reveal crystal field splitting parameters ΔCF of −217, 42, and 41 meV, respectively.
Journal ArticleDOI

Graphene coupled TiO2 photocatalysts for environmental applications: A review.

TL;DR: In this paper, the fundamental mechanism and interfacial charge transfer dynamics in TiO2/graphene nanocomposites are reviewed and the design strategies of various graphene-based hybrids are highlighted along with some specialized synthetic routes adopted to attain preferred properties.
Journal ArticleDOI

Semiconductor Electrode Materials Applied in Photoelectrocatalytic Wastewater Treatment—an Overview

Elzbieta Kusmierek
- 18 Apr 2020 - 
TL;DR: In this article, a general overview of the semiconductor materials applied as photoelectrodes in the treatment of various pollutants is presented, with a particular focus on the main experimental conditions employed in the photo-electrocatalytic degradation of various contaminants.
Journal ArticleDOI

Graded-Index Separate Confinement Heterostructure AlGaN Nanowires: Toward Ultraviolet Laser Diodes Implementation

TL;DR: In this article, a novel nanowire structure adopting a graded-index separate confinement heterostructure (GRINSCH) in which the active region is sandwiched between two compositionally graded AlGaN layers, namely, a GRINSCH diode, is proposed.
Journal ArticleDOI

A Review on Chemiresistive ZnO Gas Sensors

TL;DR: In this paper , the morphology and structure of these materials influence on the sensor response, and challenges and future perspectives for ZnO chemiresistive sensors are also discussed, focusing on how the morphology of the materials can influence on sensor response.
References
More filters
Journal ArticleDOI

High dielectric constant gate oxides for metal oxide Si transistors

TL;DR: In this article, a review of the development of high-k gate oxides such as hafnium oxide (HFO) and high-K oxides is presented, with the focus on the work function control in metal gate electrodes.
Journal ArticleDOI

Barrier inhomogeneities at Schottky contacts

TL;DR: In this article, a new analytical potential fluctuations model for the interpretation of current/voltage and capacitance/voltages measurements on spatially inhomogeneous Schottky contacts is presented.
Journal ArticleDOI

Electron transport at metal-semiconductor interfaces : general theory

TL;DR: Results suggest that the formation mechanism of the Schottky barrier is locally nonuniform at common, polycrystalline, metal-semiconductor interfaces.
Journal ArticleDOI

GaN Growth Using GaN Buffer Layer

TL;DR: In this paper, the authors used a GaN buffer layer on a sapphire substrate to obtain an optically flat and smooth surface for gallium nitride (GaN) films.
Journal ArticleDOI

Recent advances in Schottky barrier concepts

TL;DR: Theoretical models of Schottky-barrier height formation are reviewed in this paper, with a particular emphasis on the examination of how these models agree with general physical principles, and new concepts on the relationship between interface dipole and chemical bond formation are analyzed, and shown to offer a coherent explanation of a wide range of experimental data.
Related Papers (5)