scispace - formally typeset
Open AccessJournal ArticleDOI

C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector

TLDR
LshC2c2 is a RNA-guided RNase which requires the activity of its two HEPN domains, suggesting previously unidentified mechanisms of RNA targeting and degradation by CRISPR systems.
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated genes (Cas) adaptive immune system defends microbes against foreign genetic elements via DNA or RNA-DNA interference. We characterize the class 2 type VI CRISPR-Cas effector C2c2 and demonstrate its RNA-guided ribonuclease function. C2c2 from the bacterium Leptotrichia shahii provides interference against RNA phage. In vitro biochemical analysis shows that C2c2 is guided by a single CRISPR RNA and can be programmed to cleave single-stranded RNA targets carrying complementary protospacers. In bacteria, C2c2 can be programmed to knock down specific mRNAs. Cleavage is mediated by catalytic residues in the two conserved Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) domains, mutations of which generate catalytically inactive RNA-binding proteins. These results broaden our understanding of CRISPR-Cas systems and suggest that C2c2 can be used to develop new RNA-targeting tools.

read more

Citations
More filters
Journal ArticleDOI

CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity

TL;DR: It is shown that RNA-guided DNA binding unleashes indiscriminate single-stranded DNA cleavage activity by Cas12a that completely degrades ssDNA molecules, which is also a property of other type V CRISPR-Cas12 enzymes.
Journal ArticleDOI

Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6

TL;DR: ShERLOCK as discussed by the authors is a platform that combines isothermal preamplification with Cas13 to detect single molecules of RNA or DNA, which can detect Dengue or Zika virus single-stranded RNA and mutations in patient liquid biopsy samples via lateral flow.
Journal ArticleDOI

RNA targeting with CRISPR-Cas13.

TL;DR: It is demonstrated that the class 2 type VI RNA-guided RNA-targeting CRISPR–Cas effector Cas13a (previously known as C2c2) can be engineered for mammalian cell RNA knockdown and binding and is established as a flexible platform for studying RNA in mammalian cells and therapeutic development.
References
More filters
Journal ArticleDOI

Fast and accurate short read alignment with Burrows–Wheeler transform

TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Journal ArticleDOI

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Journal ArticleDOI

WebLogo: A Sequence Logo Generator

TL;DR: WebLogo generates sequence logos, graphical representations of the patterns within a multiple sequence alignment that provide a richer and more precise description of sequence similarity than consensus sequences and can rapidly reveal significant features of the alignment otherwise difficult to perceive.
Journal ArticleDOI

The Molecular Signatures Database Hallmark Gene Set Collection

TL;DR: A combination of automated approaches and expert curation is used to develop a collection of "hallmark" gene sets, derived from multiple "founder" sets, that conveys a specific biological state or process and displays coherent expression in MSigDB.
Journal ArticleDOI

CRISPR provides acquired resistance against viruses in prokaryotes

TL;DR: It is found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences, and CRISPR provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.
Related Papers (5)