scispace - formally typeset
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

TLDR
Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract
Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

read more

Citations
More filters
Journal ArticleDOI

Nanotube–Polymer Composites for Ultrafast Photonics

TL;DR: In this paper, the authors review various aspects of fabrication, characterization, device implementation and operation of carbon nanotube-polymer composites to be used in photonic applications.

High-Power Lithium Batteries from Functionalized Carbon Nanotube Electrodes

TL;DR: Layer-by-layer techniques are used to assemble an electrode that consists of additive-free, densely packed and functionalized multiwalled carbon nanotubes, which had a gravimetric energy approximately 5 times higher than conventional electrochemical capacitors and power delivery approximately 10 timesHigher than conventional lithium-ion batteries.
Journal ArticleDOI

Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review

TL;DR: In this article, a comprehensive review of various printing technologies, commonly used substrates and electronic materials is presented, including solution/dry printing and contact/noncontact printing technologies on the basis of technological, materials, and process-related developments in the field.
Journal ArticleDOI

Engineering hybrid nanotube wires for high-power biofuel cells

TL;DR: Under physiological conditions, the maximum power density of a miniature membraneless glucose/oxygen CNT biofuel cell exceeds by far the power density obtained for the current state of art carbon fibre biofuel cells.
Journal ArticleDOI

High-power lithium batteries from functionalized carbon-nanotube electrodes

TL;DR: In this article, layer-by-layer techniques are used to assemble an electrode that consists of additive-free, densely packed and functionalized multi-walled carbon nanotubes, which can store lithium up to a reversible gravimetric capacity of approximately 200 mA h g(-1) while also delivering 100 kW kg(electrode) of power and providing lifetimes in excess of thousands of cycles.
References
More filters
Journal ArticleDOI

Nanotube molecular wires as chemical sensors

TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Journal ArticleDOI

Room-temperature transistor based on a single carbon nanotube

TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Journal ArticleDOI

Crystalline Ropes of Metallic Carbon Nanotubes

TL;DR: X-ray diffraction and electron microscopy showed that fullerene single-wall nanotubes (SWNTs) are nearly uniform in diameter and that they self-organize into “ropes,” which consist of 100 to 500 SWNTs in a two-dimensional triangular lattice with a lattice constant of 17 angstroms.
Journal ArticleDOI

Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes

TL;DR: In this paper, the Young's modulus, strength, and toughness of nanostructures are evaluated using an atomic force microscopy (AFM) approach. And the results showed that the strength of the SiC NRs were substantially greater than those found previously for larger SiC structures, and they approach theoretical values.
Journal ArticleDOI

Thermal transport measurements of individual multiwalled nanotubes.

TL;DR: The thermal conductivity and thermoelectric power of a single carbon nanotube were measured using a microfabricated suspended device and shows linear temperature dependence with a value of 80 microV/K at room temperature.
Related Papers (5)