scispace - formally typeset
Open AccessJournal ArticleDOI

Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers

TLDR
In this paper, the authors present the first comprehensive study of r-process element nucleosynthesis in the ejecta of compact binary mergers (CBMs) and their relic black hole (BH)-torus systems.
Abstract
We present the first comprehensive study of r-process element nucleosynthesis in the ejecta of compact binary mergers (CBMs) and their relic black hole (BH)–torus systems. The evolution of the BH–accretion tori is simulated for seconds with a Newtonian hydrodynamics code including viscosity effects, pseudo-Newtonian gravity for rotating BHs, and an energy-dependent two-moment closure scheme for the transport of electron neutrinos and antineutrinos. The investigated cases are guided by relativistic double neutron star (NS–NS) and NS–BH merger models, producing ∼3–6 M_⊙ BHs with rotation parameters of A_BH ∼ 0.8 and tori of 0.03–0.3 M_⊙. Our nucleosynthesis analysis includes the dynamical (prompt) ejecta expelled during the CBM phase and the neutrino and viscously driven outflows of the relic BH–torus systems. While typically ∼20–25 per cent of the initial accretion-torus mass are lost by viscously driven outflows, neutrino-powered winds contribute at most another ∼1 per cent, but neutrino heating enhances the viscous ejecta significantly. Since BH–torus ejecta possess a wide distribution of electron fractions (0.1–0.6) and entropies, they produce heavy elements from A ∼ 80 up to the actinides, with relative contributions of A ≳ 130 nuclei being subdominant and sensitively dependent on BH and torus masses and the exact treatment of shear viscosity. The combined ejecta of CBM and BH–torus phases can reproduce the solar abundances amazingly well for A ≳ 90. Varying contributions of the torus ejecta might account for observed variations of lighter elements with 40 ≤ Z ≤ 56 relative to heavier ones, and a considerable reduction of the prompt ejecta compared to the torus ejecta, e.g. in highly asymmetric NS–BH mergers, might explain the composition of heavy-element deficient stars.

read more

Citations
More filters
Journal ArticleDOI

Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event

TL;DR: The ejected mass and a merger rate inferred from GW170817 imply that such mergers are a dominant mode of r-process production in the Universe.
Journal ArticleDOI

The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models

Philip S. Cowperthwaite, +161 more
TL;DR: In this article, the Gordon and Betty Moore Foundation (GBMF5076) and the Heising-Simons Foundation (HSPF) have contributed to the creation of the DES-Brazil Consortium.
Journal ArticleDOI

Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817

TL;DR: In this paper, the authors combine electromagnetic and gravitational wave information on the binary neutron star (NS) merger GW170817 in order to constrain the radii and maximum mass of NSs.
Journal ArticleDOI

The Emergence of a Lanthanide-Rich Kilonova Following the Merger of Two Neutron Stars

TL;DR: In this article, the authors reported the discovery and monitoring of the near-infrared counterpart (AT2017gfo) of a binary neutron-star merger event detected as a gravitational wave source by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo (GW170817) and as a short gamma-ray burst by Fermi Gamma-ray Burst Monitor (GBM) and Integral SPI-ACS (GRB 170817A).
References
More filters
Journal ArticleDOI

A two-solar-mass neutron star measured using Shapiro delay

TL;DR: Radio timing observations of the binary millisecond pulsar J1614-2230 that show a strong Shapiro delay signature are presented and the pulsar mass is calculated to be (1.97 ± 0.04)M⊙, which rules out almost all currently proposed hyperon or boson condensate equations of state.
Journal ArticleDOI

Advection-dominated Accretion: A Self-similar Solution

TL;DR: In this article, the authors consider viscous rotating accretion flows in which most of the viscously dissipated energy is stored as entropy rather than being radiated, and obtain a family of self-similar solutions where the temperature of the accreting gas is nearly virial and the flow is quasi-spherical.
Journal ArticleDOI

Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars

TL;DR: In this paper, it was pointed out that neutron-star collisions should synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process), and these collisions should produce neutrino bursts and resultant bursts of gamma rays; the latter should comprise a subclass of observable gamma-ray bursts.
Related Papers (5)

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott, +1134 more