scispace - formally typeset
Open AccessJournal ArticleDOI

Low-resolution Spectroscopy of Gamma-ray Burst Optical Afterglows: Biases in the Swift Sample and Characterization of the Absorbers

Reads0
Chats0
TLDR
In this article, the authors presented a sample of 77 optical afterglows (OAs) of Swift detected gamma-ray bursts (GRBs) for which spectroscopic follow-up observations have been secured.
Abstract
We present a sample of 77 optical afterglows (OAs) of Swift detected gamma-ray bursts (GRBs) for which spectroscopic follow-up observations have been secured. Our first objective is to measure the redshifts of the bursts. For the majority (90%) of the afterglows, the redshifts have been determined from the spectra. We provide line lists and equivalent widths (EWs) for all detected lines redward of Lyα covered by the spectra. In addition to the GRB absorption systems, these lists include line strengths for a total of 33 intervening absorption systems. We discuss to what extent the current sample of Swift bursts with OA spectroscopy is a biased subsample of all Swift detected GRBs. For that purpose we define an X-ray-selected statistical sample of Swift bursts with optimal conditions for ground-based follow-up from the period 2005 March to 2008 September; 146 bursts fulfill our sample criteria. We derive the redshift distribution for the statistical (X-ray selected) sample and conclude that less than 18% of Swift bursts can be at z > 7. We compare the high-energy properties (e.g., γ-ray (15-350 keV) fluence and duration, X-ray flux, and excess absorption) for three subsamples of bursts in the statistical sample: (1) bursts with redshifts measured from OA spectroscopy; (2) bursts with detected optical and/or near-IR afterglow, but no afterglow-based redshift; and (3) bursts with no detection of the OA. The bursts in group (1) have slightly higher γ-ray fluences and higher X-ray fluxes and significantly less excess X-ray absorption than bursts in the other two groups. In addition, the fractions of dark bursts, defined as bursts with an optical to X-ray slope βOX 39% in group (3). For the full sample, the dark burst fraction is constrained to be in the range 25%-42%. From this we conclude that the sample of GRBs with OA spectroscopy is not representative for all Swift bursts, most likely due to a bias against the most dusty sight lines. This should be taken into account when determining, e.g., the redshift or metallicity distribution of GRBs and when using GRBs as a probe of star formation. Finally, we characterize GRB absorption systems as a class and compare them to QSO absorption systems, in particular the damped Lyα absorbers (DLAs). On average GRB absorbers are characterized by significantly stronger EWs for H I as well as for both low and high ionization metal lines than what is seen in intervening QSO absorbers. However, the distribution of line strengths is very broad and several GRB absorbers have lines with EWs well within the range spanned by QSO-DLAs. Based on the 33 z > 2 bursts in the sample, we place a 95% confidence upper limit of 7.5% on the mean escape fraction of ionizing photons from star-forming galaxies. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, under programs 275.D-5022 (PI: Chincarini), 075.D-0270 (PI: Fynbo), 077.D-0661 (PI: Vreeswijk), 077.D-0805 (PI: Tagliaferri), 177.A-0591 (PI: Hjorth), 078.D-0416 (PI: Vreeswijk), 079.D-0429 (PI: Vreeswijk), 080.D-0526 (PI: Vreeswijk), 081.A-0135 (PI: Greiner), 281.D-5002 (PI: Della Valle), and 081.A-0856 (PI: Vreeswijk). Also based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias. Some of the data obtained herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck foundation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A γ-ray burst at a redshift of z ≈ 8.2

Nial R. Tanvir, +65 more
- 29 Oct 2009 - 
TL;DR: In this paper, the authors reported that GRB 090423 lies at a redshift of z approximate to 8.2, implying that massive stars were being produced and dying as GRBs similar to 630 Myr after the Big Bang.
Journal ArticleDOI

The Afterglows of Swift-era Gamma-ray Bursts. I. Comparing pre-Swift and Swift-era Long/Soft (Type II) GRB Optical Afterglows

David Alexander Kann, +83 more
TL;DR: The first indications of a class of long GRBs are presented, which form a bridge between the typical high-luminosity, high-redshift events and nearby low- luminosity events (which are also associated with spectroscopic supernovae) in terms of energetics and observed redshift distribution, indicating a continuous distribution overall.
Journal ArticleDOI

The luminosity function and the rate of Swift's Gamma Ray Bursts

TL;DR: In this article, the authors invert the redshift-luminosity distribution of observed long Swift gamma-ray bursts (GRBs) to obtain their rate and luminosity function.
Journal ArticleDOI

A complete sample of bright Swift Long Gamma-Ray Bursts: Sample presentation, Luminosity Function and evolution

TL;DR: In this article, a carefully selected sub-sample of Swift Long Gamma-ray Bursts (GRBs) that is complete in redshift was constructed by considering only bursts with favorable observing conditions for ground-based follow-up searches, that are bright in the 15-150 keV Swift/BAT band, with 1-s peak photon fluxes in excess to 2.6 ph s^-1 cm^-2.
References
More filters
Journal ArticleDOI

Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds

TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Journal ArticleDOI

Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds

TL;DR: In this paper, the authors presented a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed.
Journal ArticleDOI

The Swift Gamma-Ray Burst Mission

Neil Gehrels, +77 more
TL;DR: The Swift mission as discussed by the authors is a multi-wavelength observatory for gamma-ray burst (GRB) astronomy, which is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions.
Journal ArticleDOI

The keck low-resolution imaging spectrometer

TL;DR: The Low Resolution Imaging Spectrometer (LRIS) for the Cassegrain focus of the Keck 10-meter telescope on Mauna Kea is described in this paper, which has an imaging mode so it can also be used for taking direct images.
Journal ArticleDOI

Identification of two classes of gamma-ray bursts

TL;DR: In this paper, the duration distribution of the gamma-ray bursts of the first BATSE catalog is studied and a bimodality in the distribution is found, which separates GRBs into two classes: short events (less than 2 s) and longer ones (more than 2 S).
Related Papers (5)

A γ-ray burst at a redshift of z ≈ 8.2

Nial R. Tanvir, +65 more
- 29 Oct 2009 - 

The Swift Gamma-Ray Burst Mission

Neil Gehrels, +77 more