scispace - formally typeset
Open Access

Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures

Reads0
Chats0
TLDR
In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract
Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

read more

Citations
More filters
Journal ArticleDOI

Folding DNA to create nanoscale shapes and patterns

TL;DR: This work describes a simple method for folding long, single-stranded DNA molecules into arbitrary two-dimensional shapes, which can be programmed to bear complex patterns such as words and images on their surfaces.
Journal ArticleDOI

Fabrication of novel biomaterials through molecular self-assembly.

TL;DR: Two complementary strategies can be used in the fabrication of molecular biomaterials as discussed by the authors : chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly.
Journal ArticleDOI

Design and self-assembly of two-dimensional DNA crystals

TL;DR: The design and observation of two-dimensional crystalline forms of DNA that self-assemble from synthetic DNA double-crossover molecules that create specific periodic patterns on the nanometre scale are reported.
Journal ArticleDOI

Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science

TL;DR: This review is focused on current approaches emerging at the intersection of materials research, nanosciences, and molecular biotechnology, which is closely associated with both the physical and chemical properties of organic and inorganic nanoparticles.
Journal ArticleDOI

Self-assembly of DNA into nanoscale three-dimensional shapes

TL;DR: This work demonstrates the design and assembly of nanostructures approximating six shapes—monolith, square nut, railed bridge, genie bottle, stacked cross, slotted cross, and heterotrimeric wireframe icosahedra with precisely controlled dimensions.
References
More filters
Journal Article

Toward self-organization and complex matter

TL;DR: Beyond molecular chemistry based on the covalent bond, supramolecular chemistry aims at developing highly complex chemical systems from components interacting through noncovalent intermolecular forces.
Journal ArticleDOI

Main‐Chain and Pendant Poly([2]catenane)s Incorporating Complementary π‐Electron‐Rich and ‐Deficient Components

TL;DR: A main-chain poly(bis[2]catenane) was synthesized by the polyesterification of a [2] catenane monomer composed of a bipyridinium-based tetracationic cyclophane mechanically interlocked with a 1,5-dioxynaphthalene-based macrocyclic polyether as mentioned in this paper.
Journal ArticleDOI

M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities

TL;DR: Recent advances in the application of M13 bacteriophage self-assembly structures and the future of this technology are discussed.
Journal ArticleDOI

Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

TL;DR: Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self‐organize into supramolecular domains.
Journal ArticleDOI

Surface-Mediated Supramolecular Self-Assembly of Protein, Peptide, and Nucleoside Derivatives: From Surface Design to the Underlying Mechanism and Tailored Functions.

TL;DR: An overview of the different surface parameters that have been used and studied for the direction of the self-assembly of protein, peptide, and nucleoside-based molecules is presented.
Related Papers (5)