scispace - formally typeset
Open Access

Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures

Reads0
Chats0
TLDR
In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract
Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

read more

Citations
More filters
Journal ArticleDOI

Folding DNA to create nanoscale shapes and patterns

TL;DR: This work describes a simple method for folding long, single-stranded DNA molecules into arbitrary two-dimensional shapes, which can be programmed to bear complex patterns such as words and images on their surfaces.
Journal ArticleDOI

Fabrication of novel biomaterials through molecular self-assembly.

TL;DR: Two complementary strategies can be used in the fabrication of molecular biomaterials as discussed by the authors : chemical complementarity and structural compatibility, both of which confer the weak and noncovalent interactions that bind building blocks together during self-assembly.
Journal ArticleDOI

Design and self-assembly of two-dimensional DNA crystals

TL;DR: The design and observation of two-dimensional crystalline forms of DNA that self-assemble from synthetic DNA double-crossover molecules that create specific periodic patterns on the nanometre scale are reported.
Journal ArticleDOI

Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science

TL;DR: This review is focused on current approaches emerging at the intersection of materials research, nanosciences, and molecular biotechnology, which is closely associated with both the physical and chemical properties of organic and inorganic nanoparticles.
Journal ArticleDOI

Self-assembly of DNA into nanoscale three-dimensional shapes

TL;DR: This work demonstrates the design and assembly of nanostructures approximating six shapes—monolith, square nut, railed bridge, genie bottle, stacked cross, slotted cross, and heterotrimeric wireframe icosahedra with precisely controlled dimensions.
References
More filters
Journal ArticleDOI

Artificial Molecular Machines.

TL;DR: The aim of this review is to present a unified view of the field of molecular machines by focusing on past achievements, present limitations, and future perspectives.
Journal ArticleDOI

Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A.

TL;DR: The crystal structure of a complex containing the three zinc fingers from Zif268 and a consensus DNA-binding site has been determined at 2.1 angstroms resolution and refined to a crystallographic R factor of 18.2 percent.
Journal ArticleDOI

The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease.

TL;DR: Kinetic studies of aggregation by naturally occurring beta protein variants and four model peptides demonstrate that amyloid formation, like crystallization, is a nucleation-dependent phenomenon and suggest that nucleation may be the rate-determining step of in vivo amyloidsogenesis.
Journal ArticleDOI

Engineering atomic and molecular nanostructures at surfaces

TL;DR: This work presents an autonomous ordering and assembly of atoms and molecules on atomically well-defined surfaces that combines ease of fabrication with exquisite control over the shape, composition and mesoscale organization of the surface structures formed.
Journal ArticleDOI

Block copolymer lithography: Periodic arrays of ~1011 holes in 1 square centimeter

TL;DR: In this paper, dense periodic arrays of holes and dots have been fabricated in a silicon nitride-coated silicon wafer and transferred directly to the underlying silicon oxide layer by two complementary techniques.
Related Papers (5)