scispace - formally typeset
Journal ArticleDOI

Oxide-based RRAM materials for neuromorphic computing

TLDR
A broad review of oxide-based RRAM materials that can be adapted to neuromorphic computing and to help further ongoing research in the field is given.
Abstract
In this review, a comprehensive survey of different oxide-based resistive random-access memories (RRAMs) for neuromorphic computing is provided. We begin with the history of RRAM development, physical mechanism of conduction, fundamental of neuromorphic computing, followed by a review of a variety of RRAM oxide materials (PCMO, HfOx, TaOx, TiOx, NiOx, etc.) with a focus on their application for neuromorphic computing. Our goal is to give a broad review of oxide-based RRAM materials that can be adapted to neuromorphic computing and to help further ongoing research in the field.

read more

Citations
More filters
Journal ArticleDOI

SLIM: Simultaneous Logic-in-Memory Computing Exploiting Bilayer Analog OxRAM Devices.

TL;DR: This paper proposes a novel ‘Simultaneous Logic in-Memory’ (SLIM) methodology which is complementary to existing LIM approaches in literature and demonstrates novel SLIM bitcells comprising non-filamentary bilayer analog OxRAM devices with NMOS transistors.
Journal ArticleDOI

SLIM: Simultaneous Logic-in-Memory Computing Exploiting Bilayer Analog OxRAM Devices

TL;DR: In this paper, the authors proposed a novel "simultaneous logic in-memory" (SLIM) methodology that allows to implement both memory and logic operations simultaneously on the same bitcell in a non-destructive manner without losing the previously stored Memory state.
Journal ArticleDOI

Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications

TL;DR: Recent progress in the area of resistive random access memory (RRAM) technology which is considered one of the most standout emerging memory technologies owing to its high speed, low cost, enhanced storage density, potential applications in various fields, and excellent scalability is comprehensively reviewed.
Journal ArticleDOI

Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and Bionic Synaptic Application.

TL;DR: The bionic synaptic application of RRAM devices is under intensive consideration, its main characteristics such as potentiation/depression response, short-/long-term plasticity (STP/LTP), transition from short- term memory to long-term memory (STM to LTM) and spike-time-dependent plasticity(STDP) reveal the great potential of R RAM devices in the field of neuromorphic application.
Journal ArticleDOI

Ferroic tunnel junctions and their application in neuromorphic networks

TL;DR: The goal is to give a broad review of ferroic tunnel junction based artificial synapses that can be applied to neuromorphic computing and to help further ongoing research in this field.
References
More filters
Journal ArticleDOI

The missing memristor found

TL;DR: It is shown, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage.
Journal ArticleDOI

Nanoionics-based resistive switching memories

TL;DR: A coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms into metal-insulator-metal systems, and a brief look into molecular switching systems is taken.
Journal ArticleDOI

Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type

TL;DR: The results underscore the importance of precise spike timing, synaptic strength, and postsynaptic cell type in the activity-induced modification of central synapses and suggest that Hebb’s rule may need to incorporate a quantitative consideration of spike timing that reflects the narrow and asymmetric window for the induction of synaptic modification.
Journal ArticleDOI

Nanoscale Memristor Device as Synapse in Neuromorphic Systems

TL;DR: A nanoscale silicon-based memristor device is experimentally demonstrated and it is shown that a hybrid system composed of complementary metal-oxide semiconductor neurons and Memristor synapses can support important synaptic functions such as spike timing dependent plasticity.
Journal ArticleDOI

Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs

TL;DR: In dual whole-cell voltage recordings from pyramidal neurons, the coincidence of post Synaptic action potentials and unitary excitatory postsynaptic potentials was found to induce changes in EPSPs.
Related Papers (5)