scispace - formally typeset
Open AccessJournal ArticleDOI

Planck 2013 results. XVI. Cosmological parameters

Peter A. R. Ade, +327 more
- 01 Nov 2014 - 
- Vol. 571, Iss: 571
Reads0
Chats0
TLDR
In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Abstract
This paper presents the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra. We find that the Planck spectra at high multipoles (l ≳ 40) are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations. Within the context of this cosmology, the Planck data determine the cosmological parameters to high precision: the angular size of the sound horizon at recombination, the physical densities of baryons and cold dark matter, and the scalar spectral index are estimated to be θ∗ = (1.04147 ± 0.00062) × 10-2, Ωbh2 = 0.02205 ± 0.00028, Ωch2 = 0.1199 ± 0.0027, and ns = 0.9603 ± 0.0073, respectively(note that in this abstract we quote 68% errors on measured parameters and 95% upper limits on other parameters). For this cosmology, we find a low value of the Hubble constant, H0 = (67.3 ± 1.2) km s-1 Mpc-1, and a high value of the matter density parameter, Ωm = 0.315 ± 0.017. These values are in tension with recent direct measurements of H0 and the magnitude-redshift relation for Type Ia supernovae, but are in excellent agreement with geometrical constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent level precision using Planck CMB data alone. We use high-resolution CMB data together with Planck to provide greater control on extragalactic foreground components in an investigation of extensions to the six-parameter ΛCDM model. We present selected results from a large grid of cosmological models, using a range of additional astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured over the standard six-parameter ΛCDM cosmology. The deviation of the scalar spectral index from unity isinsensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find an upper limit of r0.002< 0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles beyond the three families of neutrinos in the standard model. Using BAO and CMB data, we find Neff = 3.30 ± 0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the sum of neutrino masses. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of Neff = 3.046. We find no evidence for dynamical dark energy; using BAO and CMB data, the dark energy equation of state parameter is constrained to be w = -1.13-0.10+0.13. We also use the Planck data to set limits on a possible variation of the fine-structure constant, dark matter annihilation and primordial magnetic fields. Despite the success of the six-parameter ΛCDM model in describing the Planck data at high multipoles, we note that this cosmology does not provide a good fit to the temperature power spectrum at low multipoles. The unusual shape of the spectrum in the multipole range 20 ≲ l ≲ 40 was seen previously in the WMAP data and is a real feature of the primordial CMB anisotropies. The poor fit to the spectrum at low multipoles is not of decisive significance, but is an “anomaly” in an otherwise self-consistent analysis of the Planck temperature data.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Planck 2015 results - XIII. Cosmological parameters

Peter A. R. Ade, +337 more
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Journal ArticleDOI

Astropy: A community Python package for astronomy

TL;DR: Astropy as discussed by the authors is a Python package for astronomy-related functionality, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions.
Journal ArticleDOI

Planck 2018 results. VI. Cosmological parameters

Nabila Aghanim, +232 more
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Journal ArticleDOI

Planck 2015 results. XX. Constraints on inflation

TL;DR: In this article, the authors report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements, which are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles.
References
More filters
Journal ArticleDOI

Thermalisation of light sterile neutrinos in the early universe

TL;DR: In this article, the authors derived the number of neutrinos that were thermalised at the Big Bang Nucleosynthesis (BBN) epoch for the (1 active + 1 sterile) scenario.
Journal ArticleDOI

Planck 2013 results. XXVI. Background geometry and topology of the Universe

Peter A. R. Ade, +224 more
TL;DR: In this article, a Bayesian search for an anisotropic Bianchi VII$_h$ geometry was performed, where the Bianchi parameters were decoupled from cosmological parameters.
Journal ArticleDOI

Planck 2013 results. XIV. Zodiacal emission

Peter A. R. Ade, +292 more
TL;DR: In this paper, the authors used the Planck data to investigate the behaviour of Zodiacal emission over the whole sky in the sub-millimetre and millimetre bands, showing that the spectrum of the ZodiacAL correction to the CMB maps is small compared to the planck CMB temperature power spectrum.
Journal ArticleDOI

Using BBN in cosmological parameter extraction from CMB: a forecast for Planck

TL;DR: In this paper, a self-consistent BBN prior is proposed to constrain cosmological parameters in the presence of neutrino chemical potential, which can significantly improve the accuracy of parameter inference from simulated Planck data.
Journal ArticleDOI

Can we have inflation with Omega > 1?

Andrei Linde
- 12 Mar 2003 - 
TL;DR: In this paper, the authors describe a class of models where the flatness of the universe can be resolved by fine-tuning the total number of e-folds to be sufficiently small.
Related Papers (5)

Planck 2015 results. XIII. Cosmological parameters

Peter A. R. Ade, +260 more