scispace - formally typeset
Journal ArticleDOI

Prediction of very large values of magnetoresistance in a graphene nanoribbon device.

Woo Youn Kim, +1 more
- 01 Jul 2008 - 
- Vol. 3, Iss: 7, pp 408-412
Reads0
Chats0
TLDR
First-principles simulations predict that spin-valve devices based on graphene nanoribbons will exhibit magnetoresistance values that are thousands of times higher than previously reported experimental values and it is shown that it is possible to manipulate the band structure of the nan oribbons to generate highly spin-polarized currents.
Abstract
On the basis of first-principles computer simulations, theorists have predicted that zigzag graphene nanoribbons should display magnetoresistance values that are thousands of times higher than previously reported experimental values, and also should be able to generate highly spin-polarized currents.

read more

Citations
More filters
Journal ArticleDOI

Graphene: The New Two-Dimensional Nanomaterial

TL;DR: The status of graphene research is presented, which includes aspects related to synthesis, characterization, structure, and properties.
Journal ArticleDOI

Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications

TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Journal ArticleDOI

Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

Andrea C. Ferrari, +68 more
- 04 Mar 2015 - 
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Journal ArticleDOI

Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications

TL;DR: The synthesis, characterization, properties, and applications of graphene-based materials are discussed and the promising properties together with the ease of processibility and functionalization make graphene- based materials ideal candidates for incorporation into a variety of functional materials.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Experimental observation of the quantum Hall effect and Berry's phase in graphene

TL;DR: In this paper, an experimental investigation of magneto-transport in a high-mobility single layer of Graphene is presented, where an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene is observed.
Journal Article

Experimental Observation of Quantum Hall Effect and Berry's Phase in Graphene

TL;DR: An experimental investigation of magneto-transport in a high-mobility single layer of graphene observes an unusual half-integer quantum Hall effect for both electron and hole carriers in graphene.
Related Papers (5)