scispace - formally typeset
Open AccessJournal ArticleDOI

The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update

TLDR
Improvements to Galaxy's core framework, user interface, tools, and training materials enable Galaxy to be used for analyzing tens of thousands of datasets, and >5500 tools are now available from the Galaxy ToolShed.
Abstract
Galaxy (homepage: https://galaxyproject.org, main public server: https://usegalaxy.org) is a web-based scientific analysis platform used by tens of thousands of scientists across the world to analyze large biomedical datasets such as those found in genomics, proteomics, metabolomics and imaging. Started in 2005, Galaxy continues to focus on three key challenges of data-driven biomedical science: making analyses accessible to all researchers, ensuring analyses are completely reproducible, and making it simple to communicate analyses so that they can be reused and extended. During the last two years, the Galaxy team and the open-source community around Galaxy have made substantial improvements to Galaxy's core framework, user interface, tools, and training materials. Framework and user interface improvements now enable Galaxy to be used for analyzing tens of thousands of datasets, and >5500 tools are now available from the Galaxy ToolShed. The Galaxy community has led an effort to create numerous high-quality tutorials focused on common types of genomic analyses. The Galaxy developer and user communities continue to grow and be integral to Galaxy's development. The number of Galaxy public servers, developers contributing to the Galaxy framework and its tools, and users of the main Galaxy server have all increased substantially.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update).

TL;DR: G:Profiler is now capable of analysing data from any organism, including vertebrates, plants, fungi, insects and parasites, and the 2019 update introduces an extensive technical rewrite making the services faster and more flexible.
Journal ArticleDOI

The nf-core framework for community-curated bioinformatics pipelines.

TL;DR: The nf-core framework is introduced as a means for the development of collaborative, peerreviewed, best-practice analysis pipelines that can be used across all institutions and research facilities and introduces a higher degree of portability as compared to custom in-house scripts.
Journal ArticleDOI

Multi-omics Data Integration, Interpretation, and Its Application.

TL;DR: This review collected the tools and methods that adopt integrative approach to analyze multiple omics data and summarized their ability to address applications such as disease subtyping, biomarker prediction, and deriving insights into the data.
References
More filters
Journal ArticleDOI

Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Journal ArticleDOI

Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks

TL;DR: Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
Journal ArticleDOI

STAR: ultrafast universal RNA-seq aligner

TL;DR: The Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure outperforms other aligners by a factor of >50 in mapping speed.
Related Papers (5)