scispace - formally typeset
Journal ArticleDOI

Understanding biophysicochemical interactions at the nano–bio interface

TLDR
Probing the various interfaces of nanoparticle/biological interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings.
Abstract
Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.

read more

Citations
More filters
Journal ArticleDOI

Central nervous system toxicity of metallic nanoparticles.

TL;DR: The dual effect of NMs on the CNS and the mechanisms involved are discussed, and the limitations of the current research are discussed.
Journal ArticleDOI

Cellular Targets and Mechanisms in the Cytotoxic Action of Non-biodegradable Engineered Nanoparticles

TL;DR: This review introduces problems of NPs in conventional cytotoxicity testing (changes of particle parameters in biological fluids, cellular dose, cell line and assay selection), and generation of reactive oxygen and nitrogen species by NPs and of metal ions due to dissolution of the NPs is discussed as a cause for cytot toxicity.
Journal ArticleDOI

Advances in silica based nanoparticles for targeted cancer therapy.

TL;DR: A comprehensive overview of the use of mesoporous silica nanoparticle in both passive, as well as active targeting in the field of oncology, and the advantages of this particle were further discussed.
Journal ArticleDOI

Organic Switches for Surfaces and Devices

TL;DR: Light is shed on recent advances made in the laboratories towards integrated systems using all-organic switches on a variety of substrates, while emphasizing the considerable promise and formidable challenges these advanced composite materials pose when it comes to conferring function on them.
References
More filters
Journal ArticleDOI

Toxic Potential of Materials at the Nanolevel

TL;DR: The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
Journal ArticleDOI

Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles

TL;DR: Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices.
Journal ArticleDOI

Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications

TL;DR: Practical Interests of Magnetic NuclearRelaxation for the Characterization of Superparamagnetic Colloid, and Use of Nanoparticles as Contrast Agents forMRI20825.
Journal ArticleDOI

Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.

TL;DR: The intracellular uptake of different sized and shaped colloidal gold nanoparticles is investigated and it is shown that kinetics and saturation concentrations are highly dependent upon the physical dimensions of the nanoparticles.
Journal ArticleDOI

Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles

TL;DR: This work has shown that addition of PEG and PEG-containing copolymers to the surface of nanoparticles results in an increase in the blood circulation half-life of the particles by several orders of magnitude, and creates a hydrophilic protective layer around the nanoparticles that is able to repel the absorption of opsonin proteins via steric repulsion forces.
Related Papers (5)