scispace - formally typeset
Journal ArticleDOI

Understanding biophysicochemical interactions at the nano–bio interface

TLDR
Probing the various interfaces of nanoparticle/biological interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings.
Abstract
Rapid growth in nanotechnology is increasing the likelihood of engineered nanomaterials coming into contact with humans and the environment. Nanoparticles interacting with proteins, membranes, cells, DNA and organelles establish a series of nanoparticle/biological interfaces that depend on colloidal forces as well as dynamic biophysicochemical interactions. These interactions lead to the formation of protein coronas, particle wrapping, intracellular uptake and biocatalytic processes that could have biocompatible or bioadverse outcomes. For their part, the biomolecules may induce phase transformations, free energy releases, restructuring and dissolution at the nanomaterial surface. Probing these various interfaces allows the development of predictive relationships between structure and activity that are determined by nanomaterial properties such as size, shape, surface chemistry, roughness and surface coatings. This knowledge is important from the perspective of safe use of nanomaterials.

read more

Citations
More filters
Journal ArticleDOI

Principles of nanoparticle design for overcoming biological barriers to drug delivery

TL;DR: By successively addressing each of the biological barriers that a particle encounters upon intravenous administration, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery.
Journal ArticleDOI

Cancer nanomedicine: progress, challenges and opportunities.

TL;DR: Novel engineering approaches are discussed that capitalize on the growing understanding of tumour biology and nano–bio interactions to develop more effective nanotherapeutics for cancer patients.
Journal ArticleDOI

Analysis of nanoparticle delivery to tumours

TL;DR: This Perspective explores and explains the fundamental dogma of nanoparticle delivery to tumours and answers two central questions: ‘ how many nanoparticles accumulate in a tumour?’ and ‘how does this number affect the clinical translation of nanomedicines?'
Journal ArticleDOI

The golden age: gold nanoparticles for biomedicine

TL;DR: It is argued that gold nanotechnology-enabled biomedicine is not simply an act of 'gilding the (nanomedicinal) lily', but that a new 'Golden Age' of biomedical nanotechnology is truly upon us.
Journal ArticleDOI

A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment

TL;DR: A review of the antibacterial effects of silver nanomaterials, including proposed antibacterial mechanisms and possible toxicity to higher organisms, is presented in this paper, where the authors suggest that further research is warranted given the already widespread and rapidly growing use of silver nanoparticles.
References
More filters
Journal ArticleDOI

A Film Tension Theory of Phagocytosis

TL;DR: The film tension criterion is shown to reduce to the classical wettability criterion in the limit of purely passive phagocytosis, wherein there are no electrostatic, steric repulsive, or receptor-ligand binding interactions between the cell and the phagcytosed particle.
Journal ArticleDOI

Cell-directed assembly of bio/nano interfaces-a new scheme for cell immobilization.

TL;DR: This work shows this interface to form by an active interplay between the living cell and surrounding matrix, which it refers to as cell-directed assembly (CDA).
Journal ArticleDOI

In vitro cellular uptake and cytotoxic effect of functionalized nickel nanoparticles on leukemia cancer cells.

TL;DR: The results demonstrate that the Ni NPs could exert cytotoxicity to leukemia K562 cells at high concentration, and subsequently induce both apoptosis and necrosis of target cancer cells, whilst it had little impact on target cells when at low concentration.
Journal ArticleDOI

Altering surface charge nonuniformity on individual colloidal particles.

TL;DR: It is shown that anionic polyelectrolytes and surfactants reduce the native charge nonuniformity on negatively charged particles by 80% (sigmazeta = 20 mV), even while leaving the average surface charge density almost unchanged.
Journal ArticleDOI

The future is hybrid.

TL;DR: Looking ahead, computation in its diverse aspects may be expected to assume an increasingly important role in structural biology, as the prediction of molecular structures, the computation of dynamic properties, and quantitative time-resolved models of intracellular molecular populations move towards functional maturity.
Related Papers (5)