scispace - formally typeset
Search or ask a question

Showing papers on "Biofilm published in 2011"


Journal ArticleDOI
TL;DR: The ease, low cost and flexibility of the microtiter plate assay has made it a critical tool for the study of biofilm formation, and this protocol will focus on the use of this assay to studyBiofilm formation by the model organism Pseudomonas aeruginosa.
Abstract: Biofilms are communities of microbes attached to surfaces, which can be found in medical, industrial and natural settings. In fact, life in a biofilm probably represents the predominate mode of growth for microbes in most environments. Mature biofilms have a few distinct characteristics. Biofilm microbes are typically surrounded by an extracellular matrix that provides structure and protection to the community. Microbes growing in a biofilm also have a characteristic architecture generally comprised of macrocolonies (containing thousands of cells) surrounded by fluid-filled channels. Biofilm-grown microbes are also notorious for their resistance to a range of antimicrobial agents including clinically relevant antibiotics. The microtiter dish assay is an important tool for the study of the early stages in biofilm formation, and has been applied primarily for the study of bacterial biofilms, although this assay has also been used to study fungal biofilm formation. Because this assay uses static, batch-growth conditions, it does not allow for the formation of the mature biofilms typically associated with flow cell systems. However, the assay has been effective at identifying many factors required for initiation of biofilm formation (i.e, flagella, pili, adhesins, enzymes involved in cyclic-di-GMP binding and metabolism) and well as genes involved in extracellular polysaccharide production. Furthermore, published work indicates that biofilms grown in microtiter dishes do develop some properties of mature biofilms, such a antibiotic tolerance and resistance to immune system effectors. This simple microtiter dish assay allows for the formation of a biofilm on the wall and/or bottom of a microtiter dish. The high throughput nature of the assay makes it useful for genetic screens, as well as testing biofilm formation by multiple strains under various growth conditions. Variants of this assay have been used to assess early biofilm formation for a wide variety of microbes, including but not limited to, pseudomonads, Vibrio cholerae, Escherichia coli, staphylococci, enterococci, mycobacteria and fungi. In the protocol described here, we will focus on the use of this assay to study biofilm formation by the model organism Pseudomonas aeruginosa. In this assay, the extent of biofilm formation is measured using the dye crystal violet (CV). However, a number of other colorimetric and metabolic stains have been reported for the quantification of biofilm formation using the microtiter plate assay. The ease, low cost and flexibility of the microtiter plate assay has made it a critical tool for the study of biofilms.

1,631 citations


Journal ArticleDOI
TL;DR: Environmental acidification is the main determinant of the phenotypic and genotypic changes that occur in the microflora during caries.
Abstract: Dental biofilms produce acids from carbohydrates that result in caries. According to the extended caries ecological hypothesis, the caries process consists of 3 reversible stages. The microflora on clinically sound enamel surfaces contains mainly non-mutans streptococci and Actinomyces, in which acidification is mild and infrequent. This is compatible with equilibrium of the demineralization/remineralization balance or shifts the mineral balance toward net mineral gain (dynamic stability stage). When sugar is supplied frequently, acidification becomes moderate and frequent. This may enhance the acidogenicity and acidurance of the non-mutans bacteria adaptively. In addition, more aciduric strains, such as ‘low-pH’ non-mutans streptococci, may increase selectively. These microbial acid-induced adaptation and selection processes may, over time, shift the demineralization/remineralization balance toward net mineral loss, leading to initiation/progression of dental caries (acidogenic stage). Under severe and p...

923 citations


Reference EntryDOI
TL;DR: In this article, the early stages of biofilm formation are examined using static biofilm assays, which are suitable for either small or relatively large-scale studies and can be used individually or in combination for the study of biofilms.
Abstract: Many bacteria can exist as surface-attached aggregations known as biofilms. Presented in this unit are several approaches for the study of these communities. The focus here is on static biofilm systems, which are particularly useful for examination of the early stages of biofilm formation, including initial adherence to the surface and microcolony formation. Furthermore, most of the techniques presented are easily adapted to the study of biofilms under a variety of conditions and are suitable for either small- or relatively large-scale studies. Unlike assays involving continuous-flow systems, the static biofilm assays described here require very little specialized equipment and are relatively simple to execute. In addition, these static biofilm systems allow analysis of biofilm formation with a variety of readouts, including microscopy of live cells, macroscopic visualization of stained bacteria, and viability counts. Used individually or in combination, these assays provide useful means for the study of biofilms.

923 citations


Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The experiments link SR-mediated tolerance to reduced levels of oxidant stress in bacterial cells, and inactivating this protective mechanism sensitized biofilms by several orders of magnitude to four different classes of antibiotics and markedly enhanced the efficacy of antibiotic treatment in experimental infections.
Abstract: Bacteria become highly tolerant to antibiotics when nutrients are limited. The inactivity of antibiotic targets caused by starvation-induced growth arrest is thought to be a key mechanism producing tolerance. Here we show that the antibiotic tolerance of nutrient-limited and biofilm Pseudomonas aeruginosa is mediated by active responses to starvation, rather than by the passive effects of growth arrest. The protective mechanism is controlled by the starvation-signaling stringent response (SR), and our experiments link SR-mediated tolerance to reduced levels of oxidant stress in bacterial cells. Furthermore, inactivating this protective mechanism sensitized biofilms by several orders of magnitude to four different classes of antibiotics and markedly enhanced the efficacy of antibiotic treatment in experimental infections.

799 citations


Journal ArticleDOI
TL;DR: Conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation.
Abstract: The importance of Streptococcus mutans in the etiology and pathogenesis of dental caries is certainly controversial, in part because excessive attention is paid to the numbers of S. mutans and acid production while the matrix within dental plaque has been neglected. S. mutans does not always dominate within plaque; many organisms are equally acidogenic and aciduric. It is also recognized that glucosyltransferases from S. mutans (Gtfs) play critical roles in the development of virulent dental plaque. Gtfs adsorb to enamel synthesizing glucans in situ, providing sites for avid colonization by microorganisms and an insoluble matrix for plaque. Gtfs also adsorb to surfaces of other oral microorganisms converting them to glucan producers. S. mutans expresses 3 genetically distinct Gtfs; each appears to play a different but overlapping role in the formation of virulent plaque. GtfC is adsorbed to enamel within pellicle whereas GtfB binds avidly to bacteria promoting tight cell clustering, and enhancing cohesion of plaque. GtfD forms a soluble, readily metabolizable polysaccharide and acts as a primer for GtfB. The behavior of soluble Gtfs does not mirror that observed with surface-adsorbed enzymes. Furthermore, the structure of polysaccharide matrix changes over time as a result of the action of mutanases and dextranases within plaque. Gtfs at distinct loci offer chemotherapeutic targets to prevent caries. Nevertheless, agents that inhibit Gtfs in solution frequently have a reduced or no effect on adsorbed enzymes. Clearly, conformational changes and reactions of Gtfs on surfaces are complex and modulate the pathogenesis of dental caries in situ, deserving further investigation.

799 citations


Journal ArticleDOI
TL;DR: The genetic regulation and molecular components involved in biofilm formation and maturation in the context of the Gram-positive cocci, Staphylococcus aureus, are explored.
Abstract: Increasing attention has been focused on understanding bacterial biofilms and this growth modality's relation to human disease. In this review we explore the genetic regulation and molecular components involved in biofilm formation and maturation in the context of the Gram-positive cocci, Staphylococcus aureus. In addition, we discuss diseases and host immune responses, along with current therapies associated with S. aureus biofilm infections and prevention strategies.

797 citations


Journal ArticleDOI
TL;DR: This review will discuss the mechanisms identified as playing a role in biofilm resistance to disinfectants, as well as novel anti-biofilm strategies that have recently been explored.
Abstract: A biofilm can be defined as a community of microorganisms adhering to a surface and surrounded by a complex matrix of extrapolymeric substances. It is now generally accepted that the biofilm growth mode induces microbial resistance to disinfection that can lead to substantial economic and health concerns. Although the precise origin of such resistance remains unclear, different studies have shown that it is a multifactorial process involving the spatial organization of the biofilm. This review will discuss the mechanisms identified as playing a role in biofilm resistance to disinfectants, as well as novel anti-biofilm strategies that have recently been explored.

695 citations


Journal ArticleDOI
TL;DR: Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body and they can be treated by chronic suppressive antibiotic therapy.
Abstract: Bacteria survive in nature by forming biofilms on surfaces and probably most, if not all, bacteria (and fungi) are capable of forming biofilms. A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and extracellular DNA. Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body. It is known, for example, that persistence of staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infections in cystic fibrosis patients are caused by biofilm growing mucoid strains. Gradients of nutrients and oxygen exist from the top to the bottom of biofilms and the bacterial cells located in nutrient poor areas have decreased metabolic activity and increased doubling times. These more or less dormant cells are therefore responsible for some of the tolerance to antibiotics. Biofilm growth is associated with an increased level of mutations. Bacteria in biofilms communicate by means of molecules, which activates certain genes responsible for production of virulence factors and, to some extent, biofilm structure. This phenomenon is called quorum sensing and depends upon the concentration of the quorum sensing molecules in a certain niche, which depends on the number of the bacteria. Biofilms can be prevented by antibiotic prophylaxis or early aggressive antibiotic therapy and they can be treated by chronic suppressive antibiotic therapy. Promising strategies may include the use of compounds which can dissolve the biofilm matrix and quorum sensing inhibitors, which increases biofilm susceptibility to antibiotics and phagocytosis.

681 citations


Journal ArticleDOI
TL;DR: Findings demonstrate that S. aureus biofilms are capable of attenuating traditional host proinflammatory responses, which may explain why biofilm infections persist in an immunocompetent host.
Abstract: Biofilms are complex communities of bacteria encased in a matrix composed primarily of polysaccharides, extracellular DNA, and protein. Staphylococcus aureus can form biofilm infections, which are often debilitating due to their chronicity and recalcitrance to antibiotic therapy. Currently, the immune mechanisms elicited during biofilm growth and their impact on bacterial clearance remain to be defined. We used a mouse model of catheter-associated biofilm infection to assess the functional importance of TLR2 and TLR9 in the host immune response during biofilm formation, because ligands for both receptors are present within the biofilm. Interestingly, neither TLR2 nor TLR9 impacted bacterial density or inflammatory mediator secretion during biofilm growth in vivo, suggesting that S. aureus biofilms circumvent these traditional bacterial recognition pathways. Several potential mechanisms were identified to account for biofilm evasion of innate immunity, including significant reductions in IL-1β, TNF-α, CXCL2, and CCL2 expression during biofilm infection compared with the wound healing response elicited by sterile catheters, limited macrophage invasion into biofilms in vivo, and a skewing of the immune response away from a microbicidal phenotype as evidenced by decreases in inducible NO synthase expression concomitant with robust arginase-1 induction. Coculture studies of macrophages with S. aureus biofilms in vitro revealed that macrophages successful at biofilm invasion displayed limited phagocytosis and gene expression patterns reminiscent of alternatively activated M2 macrophages. Collectively, these findings demonstrate that S. aureus biofilms are capable of attenuating traditional host proinflammatory responses, which may explain why biofilm infections persist in an immunocompetent host.

566 citations


Journal ArticleDOI
TL;DR: This work has shown that quorum sensing enhances the survival prospects of the bacteria because a coordinated attack on the host is only made when the bacterial population reaches a high population density, increasing the likelihood that the hosts defenses will be successfully overwhelmed.
Abstract: Numerous species of bacteria employ a mechanism of intercellular communication known as quorum sensing. This signaling process allows the cells comprising a bacterial colony to coordinate their gene expression in a cell-density dependent manner.1-3 Quorum sensing is mediated by small diffusible molecules termed autoinducers that are synthesized intracellularly (throughout the growth of the bacteria) and released into the surrounding milieu. As the number of cells in a bacterial colony increases, so does the extracellular concentration of the autoinducer. Once a threshold concentration is reached (at which point the population is considered to be “quorate”), productive binding of the autoinducer to cognate receptors within the bacterial cells occurs, triggering a signal transduction cascade that results in population-wide changes in gene expression.4-6 Thus, quorum sensing enables the cells within a bacterial colony to act cooperatively, facilitating population-dependent adaptive behavior.6 Quorum sensing has been shown to play a critical role in both pathogenic and symbiotic bacteria-host interactions.5 In symbionts, significant quorum sensing phenotypes include bioluminescence and root nodulation.7-11 Several clinically relevant pathogens use quorum sensing systems to regulate processes associated with virulence; this enhances the survival prospects of the bacteria because a coordinated attack on the host is only made when the bacterial population reaches a high population density, increasing the likelihood that the hosts defenses will be successfully overwhelmed.12,13 For example, in Pseudomonas aeruginosa, quorum sensing is involved in the formation of biofilms and their tolerance to antimicrobial agents14-17 and the innate host immune * To whom correspondence should be addressed. Tel.: +44 (0)1223 336498. Fax: +44 (0)1223 336362. E-mail: spring@ch.cam.ac.uk. † Department of Chemistry. ‡ Department of Biochemistry. Chem. Rev. 2011, 111, 28–67 28

546 citations


Journal ArticleDOI
TL;DR: It is shown that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures, suggesting that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms.
Abstract: Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms.

Journal ArticleDOI
TL;DR: A perspective on how materials science and engineering can address fundamental questions and unmet technological challenges in this area of microbiology, such as biofilm prevention is provided.
Abstract: This article reviews the physical and chemical constraints of environments on biofilm formation. We provide a perspective on how materials science and engineering can address fundamental questions and unmet technological challenges in this area of microbiology, such as biofilm prevention. Specifically, we discuss three factors that impact the development and organization of bacterial communities. (1) Physical properties of surfaces regulate cell attachment and physiology and affect early stages of biofilm formation. (2) Chemical properties influence the adhesion of cells to surfaces and their development into biofilms and communities. (3) Chemical communication between cells attenuates growth and influences the organization of communities. Mechanisms of spatial and temporal confinement control the dimensions of communities and the diffusion path length for chemical communication between biofilms, which, in turn, influences biofilm phenotypes. Armed with a detailed understanding of biofilm formation, researchers are applying the tools and techniques of materials science and engineering to revolutionize the study and control of bacterial communities growing at interfaces.

Journal ArticleDOI
TL;DR: The data suggest that QSI may increase the success of antibiotic treatment by increasing the susceptibility of bacterial biofilms and/or by increasing host survival following infection.
Abstract: Although the exact role of quorum sensing (QS) in various stages of biofilm formation, maturation, and dispersal and in biofilm resistance is not entirely clear, the use of QS inhibitors (QSI) has been proposed as a potential antibiofilm strategy. We have investigated whether QSI enhance the susceptibility of bacterial biofilms to treatment with conventional antimicrobial agents. The QSI used in our study target the acyl-homoserine lactone-based QS system present in Pseudomonas aeruginosa and Burkholderia cepacia complex organisms (baicalin hydrate, cinnamaldehyde) or the peptide-based system present in Staphylococcus aureus (hamamelitannin). The effect of tobramycin (P. aeruginosa, B. cepacia complex) and clindamycin or vancomycin (S. aureus), alone or in combination with QSI, was evaluated in various in vitro and in vivo biofilm model systems, including two invertebrate models and one mouse pulmonary infection model. In vitro the combined use of an antibiotic and a QSI generally resulted in increased killing compared to killing by an antibiotic alone, although reductions were strain and model dependent. A significantly higher fraction of infected Galleria mellonella larvae and Caenorhabditis elegans survived infection following combined treatment, compared to treatment with an antibiotic alone. Finally, the combined use of tobramycin and baicalin hydrate reduced the microbial load in the lungs of BALB/c mice infected with Burkholderia cenocepacia more than tobramycin treatment alone. Our data suggest that QSI may increase the success of antibiotic treatment by increasing the susceptibility of bacterial biofilms and/or by increasing host survival following infection.

Journal ArticleDOI
TL;DR: Evidence is examined that TA systems are involved in biofilm formation and persister cell formation and that these systems may be important regulators of the switch from the planktonic to the biofilm lifestyle as a stress response by their control of secondary messenger 3′,5′-cyclic diguanylic acid.
Abstract: In many genomes, toxin-antitoxin (TA) systems have been identified; however, their role in cell physiology has been unclear. Here we examine the evidence that TA systems are involved in biofilm formation and persister cell formation and that these systems may be important regulators of the switch from the planktonic to the biofilm lifestyle as a stress response by their control of secondary messenger 3,5-cyclic diguanylic acid. Specifically, upon stress, the sequence-specific mRNA interferases MqsR and MazF mediate cell survival. In addition, we propose that TA systems are not redundant, as they may have developed to respond to specific stresses.

Journal ArticleDOI
TL;DR: Application of novel imaging and molecular techniques has radically altered the understanding of the biology of multi-species biofilms, and key developments that are pertinent to the control of dental plaque are highlighted in this review.
Abstract: From the very beginning of the discipline of microbiology, the dogma has been to isolate bacteria in pure culture in order to be able to define their individual properties. This process also involved the use of conventional broth (planktonic) culture to prepare biomass and to determine the phenotype of particular species. This approach provided a sound foundation for contemporary investigations of classical infectious diseases. Recently, however, there has been a renaissance in our understanding of microbial behaviour in natural habitats, and a recognition that chronic diseases can have a complex aetiology. It is now accepted that, in nature, bacteria exist for the most part attached to a surface as a biofilm, often as a member of a polymicrobial community (or consortium) of interacting species. If biofilms were merely planktonic-like cells that had adhered to a surface and the properties of a multi-species microbial community were just the sum of the constituent populations, then the scientific and clinical imperative for their study would be low. However, application of novel imaging (confocal or epifluorescence microscopy, fluorescence in situ hybridization, live ⁄ dead stains, etc.) and molecular techniques (16S rRNA gene amplification and sequence comparison, proteomics, transcriptomics, reporter gene technology, etc.) has radically altered our understanding of the biology of multi-species biofilms (Table 1), and key developments that are pertinent to the control of dental plaque are highlighted in this review. Another major shift in our understanding of microbial behaviour has come from our increased knowledge of microbial ecology (3), and recognition of the intimate relationship between the resident human microflora and the host. Changes in the host environment have a direct impact on gene expression, and thereby influence the metabolic activity, competitiveness and composition of the microflora, while the action of resident microorganisms can have consequences for the host. An appreciation of this dynamic relationship is critical to fully understand the relationship between the oral microflora and the host in health or disease.

Journal ArticleDOI
TL;DR: TCP method is a more quantitative and reliable method for the detection ofBiofilm forming microorganisms as compared to TM and CRA methods, and it can be recommended as a general screening method for detection of biofilm producing bacteria in laboratories.
Abstract: BACKGROUND: Microorganisms growing in a biofilm are associated with chronic and recurrent human infections and are highly resistant to antimicrobial agents. There are various methods to detect biofilm production like Tissue Culture Plate (TCP), Tube method (TM), Congo Red Agar method (CRA), bioluminescent assay, piezoelectric sensors, and fluorescent microscopic examination. OBJECTIVE: This study was conducted to compare three methods for the detection of biofilms. METHOD: The study was carried out at the Department of Microbiology, Army Medical College, National University of Sciences and Technology, Pakistan, from January 2010 to June 2010. A total of 110 clinical isolates were subjected to biofilm detection methods. Isolates were identified by standard microbiological procedures. Biofilm detection was tested by TCP, TM and CRA. Antibiotic susceptibility test of biofilm producing bacteria was performed by using the Kirby-Bauer disc diffusion technique according to CLSI guidelines. RESULTS: The TCP method was considered to be superior to TM and CRA. From the total of 110 clinical isolates, TCP method detected 22.7% as high, 41% moderate and 36.3% as weak or non-biofilm producers. We have observed higher antibiotic resistance in biofilm producing bacteria than non-biofilm producers. CONCLUSION: We can conclude from our study that the TCP method is a more quantitative and reliable method for the detection of biofilm forming microorganisms as compared to TM and CRA methods, and it can be recommended as a general screening method for detection of biofilm producing bacteria in laboratories.

Journal ArticleDOI
TL;DR: It is demonstrated that the various exopolysaccharides and eDNA interactively contribute to the biofilm architecture of P. aeruginosa.
Abstract: Pseudomonas aeruginosa is an opportunistic human pathogen and has been established as a model organism to study bacterial biofilm formation. At least three exopolysaccharides (alginate, Psl, and Pel) contribute to the formation of biofilms in this organism. Here mutants deficient in the production of one or more of these polysaccharides were generated to investigate how these polymers interactively contribute to biofilm formation. Confocal laser scanning microscopy of biofilms formed in flow chambers showed that mutants deficient in alginate biosynthesis developed biofilms with a decreased proportion of viable cells than alginate-producing strains, indicating a role of alginate in viability of cells in biofilms. Alginate-deficient mutants showed enhanced extracellular DNA (eDNA)-containing surface structures impacting the biofilm architecture. PAO1 ΔpslA Δalg8 overproduced Pel, and eDNA showing meshwork-like structures presumably based on an interaction between both polymers were observed. The formation of characteristic mushroom-like structures required both Psl and alginate, whereas Pel appeared to play a role in biofilm cell density and/or the compactness of the biofilm. Mutants producing only alginate, i.e., mutants deficient in both Psl and Pel production, lost their ability to form biofilms. A lack of Psl enhanced the production of Pel, and the absence of Pel enhanced the production of alginate. The function of Psl in attachment was independent of alginate and Pel. A 30% decrease in Psl promoter activity in the alginate-overproducing MucA-negative mutant PDO300 suggested inverse regulation of both biosynthesis operons. Overall, this study demonstrated that the various exopolysaccharides and eDNA interactively contribute to the biofilm architecture of P. aeruginosa.

Journal ArticleDOI
TL;DR: The development of a synthetic genetic system that enables Escherichia coli to sense and kill a pathogenic Pseudomonas aeruginosa strain through the production and release of pyocin is described, suggesting that E. coli carrying this system may provide a novel synthetic biology‐driven antimicrobial strategy that could potentially be applied to fighting P. aerug inosa and other infectious pathogens.
Abstract: Synthetic biology aims to systematically design and construct novel biological systems that address energy, environment, and health issues. Herein, we describe the development of a synthetic genetic system, which comprises quorum sensing, killing, and lysing devices, that enables Escherichia coli to sense and kill a pathogenic Pseudomonas aeruginosa strain through the production and release of pyocin. The sensing, killing, and lysing devices were characterized to elucidate their detection, antimicrobial and pyocin release functionalities, which subsequently aided in the construction of the final system and the verification of its designed behavior. We demonstrated that our engineered E. coli sensed and killed planktonic P. aeruginosa, evidenced by 99% reduction in the viable cells. Moreover, we showed that our engineered E. coli inhibited the formation of P. aeruginosa biofilm by close to 90%, leading to much sparser and thinner biofilm matrices. These results suggest that E. coli carrying our synthetic genetic system may provide a novel synthetic biology-driven antimicrobial strategy that could potentially be applied to fighting P. aeruginosa and other infectious pathogens.

Journal ArticleDOI
TL;DR: The present review discusses the major biofilm mechanisms and the interactions among oral bacteria and indicates that biofilms on animal hosts have significantly increased resistance to various antimicrobials compared to planktonic cells.
Abstract: Biofilms are masses of microorganisms that bind to and multiply on a solid surface, typically with a fluid bathing the microbes. The microorganisms that are not attached but are free floating in an aqueous environment are termed planktonic cells. Traditionally, microbiology research has addressed results from planktonic bacterial cells. However, many recent studies have indicated that biofilms are the preferred form of growth of most microbes and particularly those of a pathogenic nature. Biofilms on animal hosts have significantly increased resistance to various antimicrobials compared to planktonic cells. These microbial communities form microcolonies that interact with each other using very sophisticated communication methods (i.e., quorum-sensing). The development of unique microbiological tools to detect and assess the various biofilms around us is a tremendously important focus of research in many laboratories. In the present review, we discuss the major biofilm mechanisms and the interactions among oral bacteria.

Journal ArticleDOI
TL;DR: The interaction and diffusion of several model nanoparticles were studied in situ using confocal microscopy and fluorescence correlation spectroscopy in a biofilm composed of Pseudomonas fluorescens, and the charge of the nanoparticles appeared to be important.
Abstract: In order to evaluate the risk of engineered nanomaterials in the natural environment, one must determine their mobility, among other factors. Such determinations are difficult given that natural systems are heterogeneous and biofilms are ubiquitous in soils and waters. The interaction and diffusion of several model nanoparticles (dextrans, fluorescent microspheres, Ag nanoparticles) were studied in situ using confocal microscopy and fluorescence correlation spectroscopy in a biofilm composed of Pseudomonas fluorescens. For the most part, relative self-diffusion coefficients decreased exponentially with the square of the radius of the nanoparticle. The precise growth conditions of the biofilm resulted in a variable density of both exopolymers and microbes, which was also shown to be an important parameter controlling the diffusion of the nanoparticles. Finally, the charge of the nanoparticles appeared to be important; for a dense bacterial biofilm, a greater than predicted decrease in the self-diffusion coefficient was observed for the negatively charged nano Ag.

Journal ArticleDOI
TL;DR: This article reviews studies demonstrating that low-dose antibiotics induce bacterial biofilm formation and the signaling pathways involved in global gene regulation in response to cell stressors and concludes that it is still unclear whether antibiotic-inducedBiofilm formation contributes to the inconsistent success of antimicrobial therapy for device infections.
Abstract: Surface-attached colonies of bacteria known as biofilms play a major role in the pathogenesis of device-related infections. Biofilm colonies are notorious for their resistance to suprainhibitory concentrations of antibiotics. Numerous studies have shown that subminimal inhibitory concentrations of some antibiotics can act as agonists of bacterial biofilm formation in vitro, a process that may have clinical relevance. This article reviews studies demonstrating that low-dose antibiotics induce bacterial biofilm formation. These studies have provided important information about the regulation of biofilm formation and the signaling pathways involved in global gene regulation in response to cell stressors. It is still unclear whether antibiotic-induced biofilm formation contributes to the inconsistent success of antimicrobial therapy for device infections.

Journal ArticleDOI
TL;DR: The surprising observation that Bacillus subtilis biofilm colonies and pellicles are extremely nonwetting, greatly surpassing the repellency of Teflon toward water and lower surface tension liquids is reported.
Abstract: Most of the world’s bacteria exist in robust, sessile communities known as biofilms, ubiquitously adherent to environmental surfaces from ocean floors to human teeth and notoriously resistant to antimicrobial agents. We report the surprising observation that Bacillus subtilis biofilm colonies and pellicles are extremely nonwetting, greatly surpassing the repellency of Teflon toward water and lower surface tension liquids. The biofilm surface remains nonwetting against up to 80% ethanol as well as other organic solvents and commercial biocides across a large and clinically important concentration range. We show that this property limits the penetration of antimicrobial liquids into the biofilm, severely compromising their efficacy. To highlight the mechanisms of this phenomenon, we performed experiments with mutant biofilms lacking ECM components and with functionalized polymeric replicas of biofilm microstructure. We show that the nonwetting properties are a synergistic result of ECM composition, multiscale roughness, reentrant topography, and possibly yet other factors related to the dynamic nature of the biofilm surface. Finally, we report the impenetrability of the biofilm surface by gases, implying defense capability against vapor-phase antimicrobials as well. These remarkable properties of B. subtilis biofilm, which may have evolved as a protection mechanism against native environmental threats, provide a new direction in both antimicrobial research and bioinspired liquid-repellent surface paradigms.

Journal ArticleDOI
TL;DR: Several examples of the dual functions of some well-known antibiotics, including those that when used at sub-inhibitory concentrations (SIC) promote an interesting response in bacterial populations and the ecological implications of such varied responses are discussed.
Abstract: Antibiotics have been extensively used in the treatment of infectious diseases The lethality of these compounds has been exploited in clinical and laboratory approaches and their specific targets in bacterial physiology elucidated However, along with this development of drugs has come the problem of increasing resistance in microbes, resulting in dramatically reduced therapeutic effectiveness 1 Pathogenic microbes have rapidly evolved efficient mechanisms of resistance, including increased efflux, enzymatic inactivation, target modification, or biofilm formation 2 The concentrations of these molecules required to achieve an antimicrobial effect are likely extremely high compared to the concentrations in which these molecules can be found in natural environments While we know their effect at lethal concentrations, the activities of these molecules at concentrations below the inhibitory limit needs deeper investigation 3 The findings of the nineteenth-century pharmacologist Hugo Schulz, who noted that certain disinfectants could have stimulatory effect on yeast growth at low concentrations, could be considered the first evidence that the action of an antimicrobial can cause a differential response depending on the concentration His observation was the first example of what it would be later called hormesis This term was coined by Chester Southam and John Ehrlich in the mid-1920s and it is used to refer to the ability of certain molecules to induce diverse responses depending on the concentration used 3 The vast amount of information related to the lethal concentration of antibiotics, targets, or side effects, contrasts dramatically with the relatively few studies focused on their effect at concentrations below the MIC (minimal inhibitory concentration) As pointed by Davies, only a small fraction of natural products that have antimicrobial activity have been extensively studied, and their role in natural settings is poorly understood Thus it is possible that many of these molecules formerly considered antibiotics might have a different function in nature It is now believed that many of these compounds might act as signaling molecules that modulate gene expression in microbial populations, or physiological functions such as motility, pigmentation, and production of metabolites, and thus facilitate inter- and intra-species communication 4 This fundamental lack of understanding may be rooted in our conception of the microbial world as single and separated species, as they are usually studied under laboratory conditions However, in nature, each niche is complex, and to different extents, variable in microbial community composition 5,6–8 Therefore it is conceivable that molecules fluctuate in concentration and diversity, thus facilitating communication among species 9 Many interesting lines of research are currently focused on understanding how some antibiotics may affect, either positively or negatively, cell-cell communication systems, and the physiological responses that are affected as a result In some cases, natural products can influence the ability of bacteria to transition from a planktonic state to complex multicellular aggregates attached to surfaces known as biofilms Cells in bioflms are encased in an extracellular matrix which can serve as a barrier for antibiotics 10 One example is the biofilm produced by the gram-negative pathogen, Pseudomonas aeruginosa, which is resistant to antibiotics produced by gram-positive competitors 11 Studies on many model microorganisms from the genera Bacillus, Streptomyces, and Pseudomonas are shedding new light on the fascinating world of cell signaling and communication in microbial world 5,12,13 We will discuss in this review several examples of the dual functions of some well-known antibiotics, including those that when used at sub-inhibitory concentrations (SIC) promote an interesting response in bacterial populations and the ecological implications of such varied responses Also, the role of other naturally synthesized antibiotics will be discussed in the context of cell communication in natural environments, including one of the most exploited environmental niches for antibiotic discovery, the soil

Journal ArticleDOI
TL;DR: Results show considerable potential for non-thermal argon plasma in eliminating pathogenic bacteria from biofilms and wound surfaces, and Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria.
Abstract: Non-thermal (low-temperature) physical plasma is under intensive study as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. The purpose of this study was to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma and to measure the effectiveness of plasma treatments against bacteria in biofilms and on wound surfaces. Overall, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, Burkholderia cenocepacia and Escherichia coli, there were no survivors among the initial 105 c.f.u. after a 5 min plasma treatment. The susceptibility of Gram-positive bacteria was species- and strain-specific. Streptococcus pyogenes was the most resistant with 17 % survival of the initial 105 c.f.u. after a 5 min plasma treatment. Staphylococcus aureus had a strain-dependent resistance with 0 and 10 % survival from 105 c.f.u. of the Sa 78 and ATCC 6538 strains, respectively. Staphylococcus epidermidis and Enterococcus faecium had medium resistance. Non-ionized argon gas was not bactericidal. Biofilms partly protected bacteria, with the efficiency of protection dependent on biofilm thickness. Bacteria in deeper biofilm layers survived better after the plasma treatment. A rat model of a superficial slash wound infected with P. aeruginosa and the plasma-sensitive Staphylococcus aureus strain Sa 78 was used to assess the efficiency of argon plasma treatment. A 10 min treatment significantly reduced bacterial loads on the wound surface. A 5-day course of daily plasma treatments eliminated P. aeruginosa from the plasma-treated animals 2 days earlier than from the control ones. A statistically significant increase in the rate of wound closure was observed in plasma-treated animals after the third day of the course. Wound healing in plasma-treated animals slowed down after the course had been completed. Overall, the results show considerable potential for non-thermal argon plasma in eliminating pathogenic bacteria from biofilms and wound surfaces.

Journal ArticleDOI
TL;DR: Findings showing that d-amino acids have previously unappreciated regulatory roles in the bacterial kingdom are reviewed to reveal new paradigms for understanding how extracytoplasmic processes are regulated as well as lead to development of novel therapeutics.
Abstract: The d-enantiomers of amino acids have been thought to have relatively minor functions in biological processes. While l-amino acids clearly predominate in nature, d-amino acids are sometimes found in proteins that are not synthesized by ribosomes, and d-Ala and d-Glu are routinely found in the peptidoglycan cell wall of bacteria. Here, we review recent findings showing that d-amino acids have previously unappreciated regulatory roles in the bacterial kingdom. Many diverse bacterial phyla synthesize and release d-amino acids, including d-Met and d-Leu, which were not previously known to be made. These noncanonical d-amino acids regulate cell wall remodeling in stationary phase and cause biofilm dispersal in aging bacterial communities. Elucidating the mechanisms by which d-amino acids govern cell wall remodeling and biofilm disassembly will undoubtedly reveal new paradigms for understanding how extracytoplasmic processes are regulated as well as lead to development of novel therapeutics.

Journal ArticleDOI
04 Nov 2011-PLOS ONE
TL;DR: It is observed that wounded mice given multispecies biofilm infections displayed a wound healing impairment over mice infected with a single-species of bacteria, and the bacteria in the polymicrobial wound infections displayed increased antimicrobial tolerance in comparison to those in single species infections.
Abstract: Chronic wound infections are typically polymicrobial; however, most in vivo studies have focused on monospecies infections. This project was designed to develop an in vivo, polymicrobial, biofilm-related, infected wound model in order to study multispecies biofilm dynamics and in relation to wound chronicity. Multispecies biofilms consisting of both Gram negative and Gram positive strains, as well as aerobes and anaerobes, were grown in vitro and then transplanted onto the wounds of mice. These in vitro-to-in vivo multi-species biofilm transplants generated polymicrobial wound infections, which remained heterogeneous with four bacterial species throughout the experiment. We observed that wounded mice given multispecies biofilm infections displayed a wound healing impairment over mice infected with a single-species of bacteria. In addition, the bacteria in the polymicrobial wound infections displayed increased antimicrobial tolerance in comparison to those in single species infections. These data suggest that synergistic interactions between different bacterial species in wounds may contribute to healing delays and/or antibiotic tolerance.

Journal ArticleDOI
TL;DR: The ability of Thymoquinone to prevent biofilm formation warrants further investigation to explore its use as bioactive substances with antibiofilm potential.
Abstract: Thymoquinone is an active principle of Nigella sativa seed known as "Habbah Al-Sauda" in Arabic countries and "Sinouj" in Tunisia. Bacterial biofilms tend to exhibit significant tolerance to antimicrobials drugs during infections. The antibacterial activity of Thymoquinone (TQ) and its biofilm inhibition potencies were investigated on 11 human pathogenic bacteria. The growth and development of the biofilm were assessed using the crystal violet (CV) and the 2, 3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT) reduction assay. TQ exhibited a significant bactericidal activity against the majority of the tested bacteria (MICs values ranged from 8 to 32 μg/ml) especially Gram positive cocci (Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis CIP 106510). Crystal violet assay demonstrated that the minimum biofilm inhibition concentration (BIC50) was reached with 22 and 60 μg/ml for Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis CIP 106510 respectively. In addition our data revealed that cells oxidative activity was influenced by TQ supplementation. In the same way, TQ prevented cell adhesion to glass slides surface. The ability of TQ to prevent biofilm formation warrants further investigation to explore its use as bioactive substances with antibiofilm potential.

Journal ArticleDOI
TL;DR: Because of its multiple functions and its high expression level in vivo, Als3 is a promising target for vaccines that induce protective cell-mediated and antibody responses.
Abstract: Candida albicans is part of the normal human flora, and it grows on mucosal surfaces in healthy individuals. In susceptible hosts, this organism can cause both mucosal and hematogenously disseminated disease. For C. albicans to persist in the host and induce disease, it must be able to adhere to biotic and abiotic surfaces, invade host cells, and obtain iron. The C. albicans hypha-specific surface protein Als3 is a member of the agglutinin-like sequence (Als) family of proteins and is important in all of these processes. Functioning as an adhesin, Als3 mediates attachment to epithelial cells, endothelial cells, and extracellular matrix proteins. It also plays an important role in biofilm formation on prosthetic surfaces, both alone and in mixed infection with Streptococcus gordonii. Als3 is one of two known C. albicans invasins. It binds to host cell receptors such as E-cadherin and N-cadherin and thereby induces host cells to endocytose the organism. Als3 also binds to host cell ferritin and enables C. albicans to utilize this protein as a source of iron. Because of its multiple functions and its high expression level in vivo, Als3 is a promising target for vaccines that induce protective cell-mediated and antibody responses. This review will summarize the multiple functions of this interesting and multifunctional protein.

Journal ArticleDOI
TL;DR: By demonstrating that antibodies against PSMβ peptides inhibited bacterial spread from indwelling medical devices, this work has provided proof of principle that interfering with biofilm detachment mechanisms may prevent dissemination of biofilm-associated infection.
Abstract: Biofilms are surface-attached agglomerations of microorganisms embedded in an extracellular matrix. Biofilm-associated infections are difficult to eradicate and represent a significant reservoir for disseminating and recurring serious infections. Infections involving biofilms frequently develop on indwelling medical devices in hospitalized patients, and Staphylococcus epidermidis is the leading cause of infection in this setting. However, the molecular determinants of biofilm dissemination are unknown. Here we have demonstrated that specific secreted, surfactant-like S. epidermidis peptides — the β subclass of phenol-soluble modulins (PSMs) — promote S. epidermidis biofilm structuring and detachment in vitro and dissemination from colonized catheters in a mouse model of device-related infection. Our study establishes in vivo significance of biofilm detachment mechanisms for the systemic spread of biofilm-associated infection and identifies the effectors of biofilm maturation and detachment in a premier biofilm-forming pathogen. Furthermore, by demonstrating that antibodies against PSMβ peptides inhibited bacterial spread from indwelling medical devices, we have provided proof of principle that interfering with biofilm detachment mechanisms may prevent dissemination of biofilm-associated infection.

Journal ArticleDOI
TL;DR: New discoveries in the field hold promise for improved therapies that target staphylococcal biofilm infections, including matrix‐degrading enzymes, small‐molecule approaches, and manipulation of natural staphlyococcal disassembly mechanisms.
Abstract: Bacteria of the genusStaphylococcus are a prominent cause of acute and chronic infections. The ability of the staphylococci to establish biofilms has been linked to the persistence of chronic infections, which has drawn considerable interest from researchers over the past decade. Biofilms can be defined as sessile communities of surface-attached cells encased in an extracellular matrix, and treatment of bacteria in this mode of growth is challenging due to the resistance of biofilm structures to both antimicrobials and host defenses. In this review of the literature, we introduce Staphylococcus aureus and Staphylococcus epidermidis biofilms and summarize current antibiotic treatment approaches for staphylococcal biofilm infections. We also review recent studies on alternative strategies for preventingbiofilmformationanddispersingestablishedbiofilms,includingmatrix-degradingenzymes,small-molecule approaches, and manipulation of natural staphylococcal disassembly mechanisms. While research on staphylococcal biofilm development is still in its early stages, new discoveries in the field hold promise for improved therapies that target staphylococcal biofilm infections.