scispace - formally typeset
Search or ask a question

Showing papers on "Platinum published in 2021"


Journal ArticleDOI
TL;DR: Characterization by multiple techniques shows that all Fe–N4 sites formed via this approach are gas-phase and electrochemically accessible and have an active site density of 1.92 × 1020 sites per gram with 100% site utilization.
Abstract: Replacing scarce and expensive platinum (Pt) with metal–nitrogen–carbon (M–N–C) catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells has largely been impeded by the low oxygen reduction reaction activity of M–N–C due to low active site density and site utilization. Herein, we overcome these limits by implementing chemical vapour deposition to synthesize Fe–N–C by flowing iron chloride vapour over a Zn–N–C substrate at 750 °C, leading to high-temperature trans-metalation of Zn–N4 sites into Fe–N4 sites. Characterization by multiple techniques shows that all Fe–N4 sites formed via this approach are gas-phase and electrochemically accessible. As a result, the Fe–N–C catalyst has an active site density of 1.92 × 1020 sites per gram with 100% site utilization. This catalyst delivers an unprecedented oxygen reduction reaction activity of 33 mA cm−2 at 0.90 V (iR-corrected; i, current; R, resistance) in a H2–O2 proton exchange membrane fuel cell at 1.0 bar and 80 °C. Replacing platinum with metal–nitrogen–carbon catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells has been impeded by low activity. These limitations have now been overcome by the trans-metalation of Zn–N4 sites into Fe–N4 sites.

264 citations


Journal ArticleDOI
26 Jul 2021
TL;DR: In this article, the authors studied CO2 reduction on gold electrodes through cyclic voltammetry and showed that, without a metal cation, the reaction does not take place in a pure 1mM H2SO4 electrolyte.
Abstract: The electrocatalytic reduction of carbon dioxide is widely studied for the sustainable production of fuels and chemicals. Metal ions in the electrolyte influence the reaction performance, although their main role is under discussion. Here we studied CO2 reduction on gold electrodes through cyclic voltammetry and showed that, without a metal cation, the reaction does not take place in a pure 1 mM H2SO4 electrolyte. We further investigated the CO2 reduction with and without metal cations in solution using scanning electrochemical microscopy in the surface-generation tip-collection mode with a platinum ultramicroelectrode as a CO and H2 sensor. CO is only produced on gold, silver or copper if a metal cation is added to the electrolyte. Density functional theory simulations confirmed that partially desolvated metal cations stabilize the CO2– intermediate via a short-range electrostatic interaction, which enables its reduction. Overall, our results redefine the reaction mechanism and provide definitive evidence that positively charged species from the electrolyte are key to stabilize the crucial reaction intermediate.

247 citations


Journal ArticleDOI
TL;DR: In this article, a single-atom platinum immobilized NiO/Ni heterostructure (PtSA-NiO//Ni) was developed as an alkaline hydrogen evolution catalyst.
Abstract: Single-atom catalysts provide an effective approach to reduce the amount of precious metals meanwhile maintain their catalytic activity. However, the sluggish activity of the catalysts for alkaline water dissociation has hampered advances in highly efficient hydrogen production. Herein, we develop a single-atom platinum immobilized NiO/Ni heterostructure (PtSA-NiO/Ni) as an alkaline hydrogen evolution catalyst. It is found that Pt single atom coupled with NiO/Ni heterostructure enables the tunable binding abilities of hydroxyl ions (OH*) and hydrogen (H*), which efficiently tailors the water dissociation energy and promotes the H* conversion for accelerating alkaline hydrogen evolution reaction. A further enhancement is achieved by constructing PtSA-NiO/Ni nanosheets on Ag nanowires to form a hierarchical three-dimensional morphology. Consequently, the fabricated PtSA-NiO/Ni catalyst displays high alkaline hydrogen evolution performances with a quite high mass activity of 20.6 A mg−1 for Pt at the overpotential of 100 mV, significantly outperforming the reported catalysts. While H2 evolution from water may represent a renewable energy source, there is a strong need to improve catalytic efficiencies while maximizing materials utilization. Here, authors examine single-atom Pt on nickel-based heterostructures as highly active electrocatalysts for alkaline H2 evolution.

243 citations


Journal ArticleDOI
20 Jan 2021-Nature
TL;DR: In this article, a low-temperature water-gas shift (WGS) catalyst is achieved by crowding platinum atoms and clusters on α-molybdenum carbide; the crowding protects the support from oxidation that would cause catalyst deactivation.
Abstract: The water–gas shift (WGS) reaction is an industrially important source of pure hydrogen (H2) at the expense of carbon monoxide and water1,2. This reaction is of interest for fuel-cell applications, but requires WGS catalysts that are durable and highly active at low temperatures3. Here we demonstrate that the structure (Pt1–Ptn)/α-MoC, where isolated platinum atoms (Pt1) and subnanometre platinum clusters (Ptn) are stabilized on α-molybdenum carbide (α-MoC), catalyses the WGS reaction even at 313 kelvin, with a hydrogen-production pathway involving direct carbon monoxide dissociation identified. We find that it is critical to crowd the α-MoC surface with Pt1 and Ptn species, which prevents oxidation of the support that would cause catalyst deactivation, as seen with gold/α-MoC (ref. 4), and gives our system high stability and a high metal-normalized turnover number of 4,300,000 moles of hydrogen per mole of platinum. We anticipate that the strategy demonstrated here will be pivotal for the design of highly active and stable catalysts for effective activation of important molecules such as water and carbon monoxide for energy production. A stable, low-temperature water–gas shift catalyst is achieved by crowding platinum atoms and clusters on α-molybdenum carbide; the crowding protects the support from oxidation that would cause catalyst deactivation.

213 citations


Journal ArticleDOI
21 Oct 2021-Science
TL;DR: Atomically ordered intermetallic nanoparticles are promising for catalytic applications but are difficult to produce because the high-temperature annealing required for atom ordering inevitably acc...
Abstract: Atomically ordered intermetallic nanoparticles are promising for catalytic applications but are difficult to produce because the high-temperature annealing required for atom ordering inevitably acc...

196 citations


Journal ArticleDOI
TL;DR: Gao et al. as discussed by the authors proposed that the Pt-Fe pair sites have partially occupied orbitals driven by strong electronic coupling, and can cooperatively adsorb O2 and dissociate the O=O bond, whereas OH* can desorb from the platinum site.
Abstract: Platinum is the archetypal electrocatalyst for oxygen reduction—a key reaction in fuel cells and zinc–air batteries. Although dispersing platinum as single atoms on a support is a promising way to minimize the amount required, catalytic activity and selectivity are often low due to unfavourable O2 adsorption. Here we load platinum onto α-Fe2O3 to construct a highly active and stable catalyst with dispersed Pt–Fe pair sites. We propose that the Pt–Fe pair sites have partially occupied orbitals driven by strong electronic coupling, and can cooperatively adsorb O2 and dissociate the O=O bond, whereas OH* can desorb from the platinum site. In alkaline conditions, the catalyst exhibits onset and half-wave potentials of 1.15 V and 1.05 V (versus the reversible hydrogen electrode), respectively, mass activity of 14.9 A mg−1Pt (at 0.95 V) and negligible activity decay after 50,000 cycles. It also shows better performance than 20% Pt/C in a zinc–air battery and H2–O2 fuel cell in terms of specific energy density and platinum utilization efficiency. Atomically dispersed platinum electrocatalysts for oxygen reduction promise minimized platinum usage, but catalytic activity and selectivity are often low due to unfavourable O2 adsorption. To circumvent this issue, Gao and colleagues load platinum onto α-Fe2O3, making a highly active and stable catalyst with dispersed Pt–Fe pair sites.

192 citations


Journal ArticleDOI
TL;DR: In this paper, a ternary transition-metal atom catalysts for oxygen reduction reaction (ORR) was proposed, which consists of atomically dispersed, nitrogen-coordinated Co-Co dimers, and Fe single sites (i.e., Co2 -N6 and Fe-N4 structures) coanchored on highly graphitized carbon supports.
Abstract: Polynary transition-metal atom catalysts are promising to supersede platinum (Pt)-based catalysts for oxygen reduction reaction (ORR). Regulating the local configuration of atomic catalysts is the key to catalyst performance enhancement. Different from the previously reported single-atom or dual-atom configurations, a new type of ternary-atom catalyst, which consists of atomically dispersed, nitrogen-coordinated Co-Co dimers, and Fe single sites (i.e., Co2 -N6 and Fe-N4 structures) that are coanchored on highly graphitized carbon supports is developed. This unique atomic ORR catalyst outperforms the catalysts with only Co2 -N6 or Fe-N4 sites in both alkaline and acid conditions. Density functional theory calculations clearly unravels the synergistic effect of the Co2 -N6 and Fe-N4 sites, which can induce higher filling degree of Fe-d orbitals and favors the binding capability to *OH intermediates (the rate determining step). This ternary-atom catalyst may be a promising alternative to Pt to drive the cathodic ORR in zinc-air batteries.

144 citations


Journal ArticleDOI
01 Oct 2021-Nature
TL;DR: In this paper, the authors show that when ultrathin Pt shells are deposited on palladium-based nanocubes, expansion and shrinkage through phosphorization and dephosphorization induces strain in the Pt(100) lattice that can be adjusted from −5.1 % to 5.9 %.
Abstract: Platinum (Pt) has found wide use as an electrocatalyst for sustainable energy conversion systems1–3. The activity of Pt is controlled by its electronic structure (typically, the d-band centre), which depends sensitively on lattice strain4,5. This dependence can be exploited for catalyst design4,6–8, and the use of core–shell structures and elastic substrates has resulted in strain-engineered Pt catalysts with drastically improved electrocatalytic performances7,9–13. However, it is challenging to map in detail the strain–activity correlations in Pt-catalysed conversions, which can involve a number of distinct processes, and to identify the optimal strain modification for specific reactions. Here we show that when ultrathin Pt shells are deposited on palladium-based nanocubes, expansion and shrinkage of the nanocubes through phosphorization and dephosphorization induces strain in the Pt(100) lattice that can be adjusted from −5.1 per cent to 5.9 per cent. We use this strain control to tune the electrocatalytic activity of the Pt shells over a wide range, finding that the strain–activity correlation for the methanol oxidation reaction and hydrogen evolution reaction follows an M-shaped curve and a volcano-shaped curve, respectively. We anticipate that our approach can be used to screen out lattice strain that will optimize the performance of Pt catalysts—and potentially other metal catalysts—for a wide range of reactions. By depositing platinum shells on palladium-based nanocubes, the strain can be controlled by through phosphorization and dephosphorization, making it possible to tune the electrocatalytic activity of the platinum shells.

136 citations


Journal ArticleDOI
19 Mar 2021-Science
TL;DR: In this article, the authors used atomic layer deposition to grow In2O3 over Pt/Al 2O3, and this nanostructure kinetically couples the domains through surface hydrogen atom transfer, resulting in propane dehydrogenation (PDH) to propylene by platinum, then selective hydrogen combustion (HOC) without excessive hydrocarbon combustion.
Abstract: Tandem catalysis couples multiple reactions and promises to improve chemical processing, but precise spatiotemporal control over reactive intermediates remains elusive. We used atomic layer deposition to grow In2O3 over Pt/Al2O3, and this nanostructure kinetically couples the domains through surface hydrogen atom transfer, resulting in propane dehydrogenation (PDH) to propylene by platinum, then selective hydrogen combustion by In2O3, without excessive hydrocarbon combustion. Other nanostructures, including platinum on In2O3 or platinum mixed with In2O3, favor propane combustion because they cannot organize the reactions sequentially. The net effect is rapid and stable oxidative dehydrogenation of propane at high per-pass yields exceeding the PDH equilibrium. Tandem catalysis using this nanoscale overcoating geometry is validated as an opportunity for highly selective catalytic performance in a grand challenge reaction.

95 citations


Journal ArticleDOI
09 Jul 2021-Science
TL;DR: In this paper, a silica-supported platinum-tin (Pt1Sn1) nanoparticles were used for purpose-on-purpose propylene production through nonoxidative propane dehydrogenation (PDH).
Abstract: Intentional ("on-purpose") propylene production through nonoxidative propane dehydrogenation (PDH) holds great promise for meeting the increasing global demand for propylene. For stable performance, traditional alumina-supported platinum-based catalysts require excess tin and feed dilution with hydrogen; however, this reduces per-pass propylene conversion and thus lowers catalyst productivity. We report that silica-supported platinum-tin (Pt1Sn1) nanoparticles ( 99%). Atomic mixing of Pt and Sn in the precursor is preserved upon reduction and during catalytic operation. The benign interaction of these nanoparticles with the silicon dioxide support does not lead to Pt-Sn segregation and formation of a tin oxide phase that can occur over traditional catalyst supports.

95 citations


Journal ArticleDOI
TL;DR: In this paper, a general Cu2-x S nanocube template-assisted and reverse cation exchange-mediated growth strategy was explored for fabricating hollow multinary metal sulfide.
Abstract: Herein, we explore a general Cu2-x S nanocube template-assisted and reverse cation exchange-mediated growth strategy for fabricating hollow multinary metal sulfide. Unlike the traditional cation exchange method controlled by the metal sulfide constant, the introduction of tri-n-butylphosphine (TBP) can reverse cation exchange to give a series of hollow metal sulfides. A variety of hollow multinary metal sulfide cubic nanostructures has been demonstrated while preserving anisotropic shapes to the as-synthesized templates, including binary compounds (CdS, ZnS, Ag2 S, PbS, SnS), ternary compound (CuInS2 , Znx Cd1-x S), and quaternary compound (single-atom platinum anchored Znx Cd1-x S; Znx Cd1-x S-Pt1 ). Experimental and density functional theory (DFT) calculations show that the hollow metal sulfide semiconductors obtained could significantly improve the separation and migration of photogenerated electron-hole pairs. Owing to the efficient charge transfer, the Znx Cd1-x S-Pt1 exhibited outstanding photocatalytic performance of CO2 to CO, with the highest CO generation rate of 75.31 μmol h-1 .


Journal ArticleDOI
TL;DR: In this paper, a new route for further improving Pt catalytic efficiency by cobalt (Co) and Pt dual-single-atoms on titanium dioxide (TiO2 ) surfaces, which contains a fraction of nonbonding oxygen-coordinated Co-O-Pt dimers, is reported.
Abstract: The platinum single-atom-catalyst is verified as a very successful route to approach the size limit of Pt catalysts, while how to further improve the catalytic efficiency of Pt is a fundamental scientific question and is challenging because the size issue of Pt is approached at the ultimate ceiling as single atoms. Here, a new route for further improving Pt catalytic efficiency by cobalt (Co) and Pt dual-single-atoms on titanium dioxide (TiO2 ) surfaces, which contains a fraction of nonbonding oxygen-coordinated Co-O-Pt dimers, is reported. These Co-Pt dimer sites originate from loading high-density Pt single-atoms and Co single-atoms, with them anchoring randomly on the TiO2 substrate. This dual-single-atom catalyst yields 13.4% dimer sites and exhibits an ultrahigh and stable photocatalytic activity with a rate of 43.467 mmol g-1 h-1 and external quantum efficiency of ≈83.4% at 365 nm. This activity far exceeds those of equal amounts of Pt single-atom and typical Pt clustered catalysts by 1.92 and 1.64 times, respectively. The enhancement mechanism relies on the oxygen-coordinated Co-O-Pt dimer coupling, which can mutually optimize the electronic states of both Pt and Co sites to weaken H* binding. Namely, the "mute" Co single-atom is activated by Pt single-atom and the activity of the Pt atom is further enhanced through the dimer interaction. This strategy of nonbonding interactive dimer sites and the oxygen-mediated catalytic mechanisms provide emerging rich opportunities for greatly improving the catalytic efficiency and developing novel catalysts with creating new electronic states.

Journal ArticleDOI
TL;DR: In this paper, Ni(OH)2 is modified by platinum to adjust the electronic structure and the current density of HMFOR improves 8.2 times at the Pt/Ni(OH)-2 electrode compared with that on Ni(O)2 electrode.
Abstract: Nickel hydroxide (Ni(OH)2 ) is a promising electrocatalyst for the 5-hydroxymethylfurfural oxidation reaction (HMFOR) and the dehydronated intermediates Ni(OH)O species are proved to be active sites for HMFOR. In this study, Ni(OH)2 is modified by platinum to adjust the electronic structure and the current density of HMFOR improves 8.2 times at the Pt/Ni(OH)2 electrode compared with that on Ni(OH)2 electrode. Operando methods reveal that the introduction of Pt optimized the redox property of Ni(OH)2 and accelerate the formation of Ni(OH)O during the catalytic process. Theoretical studies demonstrate that the enhanced Ni(OH)O formation kinetics originates from the reduced dehydrogenation energy of Ni(OH)2 . The product analysis and transition state simulation prove that the Pt also reduces adsorption energy of HMF with optimized adsorption behavior as Pt can act as the adsorption site of HMF. Overall, this work here provides a strategy to design an efficient and universal nickel-based catalyst for HMF electro-oxidation, which can also be extended to other Ni-based catalysts such as Ni(HCO3 )2 and NiO.

Journal ArticleDOI
15 Mar 2021-Fuel
TL;DR: The water gas shift reaction (WGSR) is a moderately exothermic reaction between carbon monoxide and steam to form carbon dioxide and hydrogen in typical industrial applications as discussed by the authors.

Journal ArticleDOI
TL;DR: In this article, high CO oxidation activity at sub-ambient temperatures is reported for Pt/CeO2 catalysts with high content of Pt in the form of dispersed Pt2+ and Pt4+ centers.
Abstract: Reducing the operating temperature of oxidation catalysts is important for designing energy efficient processes, extending catalyst lifetime, and abating pollutants, especially in cold climates. Herein, high CO oxidation activity at sub-ambient temperatures is reported for Pt/CeO2 catalysts with high content of Pt in the form of dispersed Pt2+ and Pt4+ centers. Whereas the reference 1 wt%Pt catalyst was active for CO oxidation only above 100ᵒC, the 8 and 20 wt%Pt catalysts converted 60 and 90 % of CO, respectively, below 0ᵒC. Ionic platinum was shown to facilitate oxygen release from ceria and lower the light-off temperature of the reaction occurring through the Mars-van-Krevelen mechanism. However, the remarkable activity observed at sub-ambient temperatures for the ≥8 wt%Pt catalysts is proposed to involve O2 and CO reactants weakly adsorbed on PtOx clusters. The synergies between ionic platinum and nanostructured ceria reported in this work advance the knowledge-driven design of catalysts for low-temperature oxidation reactions.

Journal ArticleDOI
TL;DR: In this article, the degradation of platinum catalyst layer has become a significant issue in the improvement of Proton Exchange Membrane Fuel Cells (PEMFCs) through environmentally-friendly potential.

Journal ArticleDOI
TL;DR: In this paper, the progress in the development of transition metal carbides (TMCs) and transition metals nitrides (TMNs) relative to their application as catalysts for the oxygen reduction reaction in fuel cells is summarized.

Journal ArticleDOI
TL;DR: A series of Pt-Ni/CeO2 catalysts with different Pt:Ni atomic ratios were synthetized through incipient wetness impregnation over CeO2 prepared by precipitation.

Journal ArticleDOI
TL;DR: In this article, a single atomically dispersed platinum on ruthenium oxide (Pt1/RuO2) was synthesized using a simple impregnation-adsorption method.
Abstract: Single-atom catalysts have been widely investigated for several electrocatalytic reactions except electrochemical alcohol oxidation. Herein, we synthesize atomically dispersed platinum on ruthenium oxide (Pt1/RuO2) using a simple impregnation-adsorption method. We find that Pt1/RuO2 has good electrocatalytic activity towards methanol oxidation in an alkaline media with a mass activity that is 15.3-times higher than that of commercial Pt/C (6766 vs. 441 mA mg‒1Pt). In contrast, single atom Pt on carbon black is inert. Further, the mass activity of Pt1/RuO2 is superior to that of most Pt-based catalysts previously developed. Moreover, Pt1/RuO2 has a high tolerance towards CO poisoning, resulting in excellent catalytic stability. Ab initio simulations and experiments reveal that the presence of Pt‒O3f (3-fold coordinatively bonded O)‒Rucus (coordinatively unsaturated Ru) bonds with the undercoordinated bridging O in Pt1/RuO2 favors the electrochemical dehydrogenation of methanol with lower energy barriers and onset potential than those encountered for Pt‒C and Pt‒Ru. It is still challenging to engineer single-atom catalysts for electrocatalytic methanol oxidation. Here, the authors design Pt single atom supported on RuO2 for highly active methanol oxidation in contrast to the inert Pt single atom supported on carbon.

Journal ArticleDOI
TL;DR: This review aims to help researchers to improve their understanding of platinum(IV) anticancer prodrugs and hopefully to generate new ideas, strategies, and applications in the area of metal-based drugs.

Journal ArticleDOI
TL;DR: In this article, a self-template pyrolysis strategy at high temperature was proposed to synthesize one-dimensionally holey Pt nanotubes (Pt-hNTs) using PtII-dimethylglyoxime complex(PtII-DMG) nanorods as the reaction precursor.
Abstract: The catalytic/electrocatalytic performance of platinum (Pt) nanostructures highly relates to their morphology. Herein, we propose a facile self-template pyrolysis strategy at high temperature to synthesize one-dimensionally holey Pt nanotubes (Pt-hNTs) using PtII-dimethylglyoxime complex (PtII-DMG) nanorods as the reaction precursor. The coordination capability of DMG results in the generation of PtII-DMG nanorods, whereas the reducibility of DMG at high temperature leads to the reduction of PtII species in PtII-DMG nanorods. During the reaction process, the inside-out Ostwald ripening phenomenon leads to the hollow morphology of Pt-hNTs. Benefiting from the physical characteristics of hollow and holey structure, Pt-hNTs with clean surface show superior electroactivity and durability for catalyzing ethanol electrooxidation as well as hydrogen evolution reaction in alkaline media. Under optimized experimental conditions, the constructed symmetric Pt-hNTs||Pt-hNTs ethanol electrolyzer only requires an electrolysis voltage of 0.40 V to achieve the electrochemical hydrogen production, demonstrating a highly energy saving strategy relative to traditional water electrolysis.

Journal ArticleDOI
01 Oct 2021
TL;DR: In this paper, gold nanoparticles equipped with a platinum monolayer are introduced that, thanks to lattice expansion and ligand effect, achieve a remarkable performance for the chemoselective hydrogenation of halonitrobenzenes.
Abstract: Particle size governs the geometric and electronic structure of metal nanoparticles (NPs), shaping their catalytic performance. However, size-dependent entanglement in the geometric and electronic structures often leads to a trade-off between activity and selectivity, limiting the optimization of the overall catalytic performance. Here we show that precisely controlled deposition of a platinum monolayer on large gold NPs breaks the activity–selectivity trade-off on particle size in platinum-catalysed chemoselective hydrogenation of halonitrobenzenes, resulting in a remarkable activity, along with a 99% selectivity for haloanilines under mild conditions. The high activity results from upshift of the platinum 5d-band centre through platinum lattice expansion and ligand effect, whereas the high selectivity is caused by exposing more terrace sites on large particles. The geometric and electronic properties of bimetallic monolayer materials, distinct from monometallic NPs and alloys, constitute a promising platform for the rational design of metal catalysts with superior performance in hydrogenation reactions. Chemoselective reactions are often characterized by an activity–selectivity trade-off that renders their optimization difficult. Here gold nanoparticles equipped with a platinum monolayer are introduced that, thanks to lattice expansion and ligand effect, achieve a remarkable performance for the chemoselective hydrogenation of halonitrobenzenes


Journal ArticleDOI
TL;DR: In this paper, a ternary nickel-tungsten-copper nanoalloy with marked hydrogen oxidation reaction (HOR) activity and stability was proposed. But, the performance of the nano-alloy was not as good as the Pt/C catalyst.
Abstract: Operating fuel cells in alkaline environments permits the use of platinum-group-metal-free (PGM-free) catalysts and inexpensive bipolar plates, leading to significant cost reduction. Of the PGM-free catalysts explored, however, only a few nickel-based materials are active for catalyzing the hydrogen oxidation reaction (HOR) in alkali; moreover, these catalysts deactivate rapidly at high anode potentials owing to nickel hydroxide formation. Here we describe that a nickel–tungsten–copper (Ni5.2WCu2.2) ternary alloy showing HOR activity rivals Pt/C benchmark in alkaline electrolyte. Importantly, we achieved a high anode potential up to 0.3 V versus reversible hydrogen electrode on this catalyst with good operational stability over 20 h. The catalyst also displays excellent CO-tolerant ability that Pt/C catalyst lacks. Experimental and theoretical studies uncover that nickel, tungsten, and copper play in synergy to create a favorable alloying surface for optimized hydrogen and hydroxyl bindings, as well as for the improved oxidation resistance, which result in the HOR enhancement. The lack of efficient and cost-effective catalysts for H2 oxidation reaction (HOR) hinders the application of anion exchange membrane fuel cells. Here, authors report a ternary nickel-tungsten-copper nanoalloy with marked HOR activity and stability that rivals the benchmark platinum catalyst.

Journal ArticleDOI
TL;DR: In this article, a multi-dimensional ternary composite electrocatalysts of Pt/Ni(OH)2/nitrogen-doped graphene catalysts have been synthesized with 0D Pt nanoparticles on the 2D Ni(OH)/2/NG nanosheets supported by 3D porous nitrogen doped graphene hydrogel, and with a low amount of Pt.

Journal ArticleDOI
TL;DR: In this paper, three Pt/CeO2 catalysts, including atomically dispersed Pt species, and Pt clusters or particles with different sizes, were synthesized to improve the selectivity of CO and inhibiting the formation of CH4.
Abstract: Platinum (Pt)-based catalysts often failed to possess high CO2 conversion and high CO selectivity at the same time (especially at high reaction temperature) in reverse water gas shift (RWGS) reaction. Herein, we found that atomically dispersed Pt species was the crucial factor in improving the selectivity of CO and inhibiting the formation of CH4. Three Pt/CeO2 catalysts, including atomically dispersed Pt species, and Pt clusters or particles with different sizes, were synthesized. It was found that the atomically dispersed Pt/CeO2 catalyst led to an outstanding CO selectivity (>98 %) in the temperature range of 200∼450 °C, while the CO selectivities over Pt nanoparticles decreased conspicuously as the reaction temperature increased. CO-TPD and in situ FTIR experiments demonstrated that CH4 was produced by the further hydrogenation of CO. And the atomically dispersed Pt species had the relatively weak adsorption strength toward CO, which prevented excessive hydrogenation and promoted CO selectivity in RWGS reaction. Our investigation provides a new thinking for designing the RWGS reaction catalyst with an outstanding CO selectivity and emphasize the significance of atomically dispersed catalysts in catalytic reactions again.

Journal ArticleDOI
TL;DR: In this paper, a single-atom Pt1/CeO2 catalyst was synthesized by thermal-shock (TS) synthesis and shown to be highly active and thermally stable.
Abstract: A single-atom Pt1 /CeO2 catalyst formed by atom trapping (AT, 800 °C in air) shows excellent thermal stability but is inactive for CO oxidation at low temperatures owing to over-stabilization of Pt2+ in a highly symmetric square-planar Pt1 O4 coordination environment. Reductive activation to form Pt nanoparticles (NPs) results in enhanced activity; however, the NPs are easily oxidized, leading to drastic activity loss. Herein we show that tailoring the local environment of isolated Pt2+ by thermal-shock (TS) synthesis leads to a highly active and thermally stable Pt1 /CeO2 catalyst. Ultrafast shockwaves (>1200 °C) in an inert atmosphere induced surface reconstruction of CeO2 to generate Pt single atoms in an asymmetric Pt1 O4 configuration. Owing to this unique coordination, Pt1 δ+ in a partially reduced state dynamically evolves during CO oxidation, resulting in exceptional low-temperature performance. CO oxidation reactivity on the Pt1 /CeO2 _TS catalyst was retained under oxidizing conditions.

Journal ArticleDOI
TL;DR: In this article, the concept of increased electron donors induced by nitrogen vacancy was adopted to propose an efficient strategy to develop highly active and stable catalysts for molecular O2 activation, which shows great enhancement of catalytic performance and durability in toluene oxidation.
Abstract: Activation of O2 is a critical step in heterogeneous catalytic oxidation. Here, the concept of increased electron donors induced by nitrogen vacancy is adopted to propose an efficient strategy to develop highly active and stable catalysts for molecular O2 activation. Carbon nitride with nitrogen vacancies is prepared to serve as a support as well as electron sink to construct a synergistic catalyst with Pt nanoparticles. Extensive characterizations combined with the first-principles calculations reveal that nitrogen vacancies with excess electrons could effectively stabilize metallic Pt nanoparticles by strong p-d coupling. The Pt atoms and the dangling carbon atoms surround the vacancy can synergistically donate electrons to the antibonding orbital of the adsorbed O2. This synergistic catalyst shows great enhancement of catalytic performance and durability in toluene oxidation. The introduction of electron-rich non-oxide substrate is an innovative strategy to develop active Pt-based oxidation catalysts, which could be conceivably extended to a variety of metal-based catalysts for catalytic oxidation.

Journal ArticleDOI
TL;DR: Exploring highly efficient platinum single-atom (Pt1) catalysts for oxygen reduction reaction (ORR) is desired to greatly reduce the catalysts costs of polymer electrolyte membrane (PEM) fuel cells as mentioned in this paper.
Abstract: Exploring highly efficient platinum single-atom (Pt1) catalysts for oxygen reduction reaction (ORR) is desired to greatly reduce the catalysts costs of polymer electrolyte membrane (PEM) fuel cells...