scispace - formally typeset
Search or ask a question

Showing papers on "Stem cell marker published in 2006"


Book
01 Jan 2006
TL;DR: Animal Models and Therapy, Directed Differentiation and Characterization of Genetically Modified Embryonic Stem Cells for Therapy, and Use of Differentiating Embryonics Stem cells in the Parkinsonian Mouse Model are reviewed.
Abstract: Isolation and Maintenance.- Isolation and Differentiation of Medaka Embryonic Stem Cells.- Maintenance of Chicken Embryonic Stem Cells In Vitro.- Derivation and Culture of Mouse Trophoblast Stem Cells In Vitro.- Derivation, Maintenance, and Characterization of Rat Embryonic Stem Cells In Vitro.- Derivation, Maintenance, and Induction of the Differentiation In Vitro of Equine Embryonic Stem Cells.- Generation and Characterization of Monkey Embryonic Stem Cells.- Derivation and Propagation of Embryonic Stem Cells in Serum- and Feeder-Free Culture.- Signaling in Embryonic Stem Cell Differentiation.- Internal Standards in Differentiating Embryonic Stem Cells In Vitro.- Matrix Assembly, Cell Polarization, and Cell Survival.- Phosphoinositides, Inositol Phosphates, and Phospholipase C in Embryonic Stem Cells.- Cripto Signaling in Differentiating Embryonic Stem Cells.- The Use of Embryonic Stem Cells to Study Hedgehog Signaling.- Transfection and Promoter Analysis in Embryonic Stem Cells.- SAGE Analysis to Identify Embryonic Stem Cell-Predominant Transcripts.- Utilization of Digital Differential Display to Identify Novel Targets of Oct3/4.- Gene Silencing Using RNA Interference in Embryonic Stem Cells.- Genetic Manipulation of Embryonic Stem Cells.- Efficient Transfer of HSV-1 Amplicon Vectors Into Embryonic Stem Cells and Their Derivatives.- Lentiviral Vector-Mediated Gene Transfer in Embryonic Stem Cells.- Use of the Cytomegalovirus Promoter for Transient and Stable Transgene Expression in Mouse Embryonic Stem Cells.- Use of Simian Immunodeficiency Virus Vectors for Simian Embryonic Stem Cells.- Generation of Green Fluorescent Protein-Expressing Monkey Embryonic Stem Cells.- DNA Damage Response and Mutagenesis in Mouse Embryonic Stem Cells.- Ultraviolet-Induced Apoptosis in Embryonic Stem Cells In Vitro.- Use of Embryonic Stem Cells in Pharmacological and Toxicological Screens.- Use of Differentiating Embryonic Stem Cells in Pharmacological Studies.- Embryonic Stem Cells as a Source of Differentiated Neural Cells for Pharmacological Screens.- Use of Murine Embryonic Stem Cells in Embryotoxicity Assays.- Use of Chemical Mutagenesis in Mouse Embryonic Stem Cells.- Epigenetic Analysis of Embryonic Stem Cells.- Nuclear Reprogramming of Somatic Nucleus Hybridized With Embryonic Stem Cells by Electrofusion.- Methylation in Embryonic Stem Cells In Vitro.- Tumor-Like Properties.- Identification of Genes Involved in Tumor-Like Properties of Embryonic Stem Cells.- In Vivo Tumor Formation From Primate Embryonic Stem Cells.- Animal Models and Therapy.- Directed Differentiation and Characterization of Genetically Modified Embryonic Stem Cells for Therapy.- Use of Differentiating Embryonic Stem Cells in the Parkinsonian Mouse Model.

3,665 citations


Journal ArticleDOI
03 Aug 2006-Nature
TL;DR: This work uses short hairpin RNA (shRNA) loss-of-function techniques to downregulate a set of gene products whose expression patterns suggest self-renewal regulatory functions, and focuses on transcriptional regulators and identifies seven genes for which shRNA-mediated depletion negatively affects self-Renewal.
Abstract: We present an integrated approach to identify genetic mechanisms that control self-renewal in mouse embryonic stem cells. We use short hairpin RNA (shRNA) loss-of-function techniques to downregulate a set of gene products whose expression patterns suggest self-renewal regulatory functions. We focus on transcriptional regulators and identify seven genes for which shRNA-mediated depletion negatively affects self-renewal, including four genes with previously unrecognized roles in self-renewal. Perturbations of these gene products are combined with dynamic, global analyses of gene expression. Our studies suggest specific biological roles for these molecules and reveal the complexity of cell fate regulation in embryonic stem cells.

1,009 citations


Journal ArticleDOI
TL;DR: This study demonstrates the existence and provides the characterization of a population of resident multipotent progenitor cells in adult human glomeruli, potentially opening new avenues for the development of regenerative medicine in patients who have renal diseases.
Abstract: Regenerative medicine represents a critical clinical goal for patients with ESRD, but the identification of renal adult multipotent progenitor cells has remained elusive. It is demonstrated that in human adult kidneys, a subset of parietal epithelial cells (PEC) in the Bowman’s capsule exhibit coexpression of the stem cell markers CD24 and CD133 and of the stem cell–specific transcription factors Oct-4 and BmI-1, in the absence of lineage-specific markers. This CD24 + CD133 + PEC population, which could be purified from cultured capsulated glomeruli, revealed self-renewal potential and a high cloning efficiency. Under appropriate culture conditions, individual clones of CD24 + CD133 + PEC could be induced to generate mature, functional, tubular cells with phenotypic features of proximal and/or distal tubules, osteogenic cells, adipocytes, and cells that exhibited phenotypic and functional features of neuronal cells. The injection of CD24 + CD133 + PEC but not of CD24 − CD133 − renal cells into SCID mice that had acute renal failure resulted in the regeneration of tubular structures of different portions of the nephron. More important, treatment of acute renal failure with CD24 + CD133 + PEC significantly ameliorated the morphologic and functional kidney damage. This study demonstrates the existence and provides the characterization of a population of resident multipotent progenitor cells in adult human glomeruli, potentially opening new avenues for the development of regenerative medicine in patients who have renal diseases.

686 citations


Journal ArticleDOI
TL;DR: The SP phenotype may prove invaluable for the initial isolation of resident tissue stem cells in the absence of definitive cell‐surface markers and may have broad‐ranging applications in stem cell biology, from the purification of novel stem cell populations to the development of autologous stem cell therapies.
Abstract: A defining property of murine hematopoietic stem cells (HSCs) is low fluorescence after staining with Hoechst 33342 and Rhodamine 123. These dyes have proven to be remarkably powerful tools in the purification and characterization of HSCs when used alone or in combination with antibodies directed against stem cell epitopes. Hoechst low cells are described as side population (SP) cells by virtue of their typical profiles in Hoechst red versus Hoechst blue bivariate fluorescent-activated cell sorting dot plots. Recently, excitement has been generated by the findings that putative stem cells from solid tissues may also possess this SP phenotype. SP cells have now been isolated from a wide variety of mammalian tissues based on this same dye efflux phenomenon, and in many cases this cell population has been shown to contain apparently multipotent stem cells. What is yet to be clearly addressed is whether cell fusion accounts for this perceived SP multipotency. Indeed, if low fluorescence after Hoechst staining is a phenotype shared by hematopoietic and organ-specific stem cells, do all resident tissue SP cells have bone marrow origins or might the SP phenotype be a property common to all stem cells? Subject to further analysis, the SP phenotype may prove invaluable for the initial isolation of resident tissue stem cells in the absence of definitive cell-surface markers and may have broad-ranging applications in stem cell biology, from the purification of novel stem cell populations to the development of autologous stem cell therapies.

487 citations


Journal ArticleDOI
TL;DR: Mesenchymal stem cells from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model and this work isolated human adipose tissue-derived MSC from four healthy donors.

434 citations


Journal ArticleDOI
TL;DR: A pluripotent progenitor population in adult human liver that could provide a basis for cell therapy strategies is identified and characterized by stringent conditions of liver cell cultures.
Abstract: Several studies suggested the presence of stem cells in the adult normal human liver; however, a population with stem cell properties has not yet been isolated. The purpose of the present study was to identify and characterize progenitor cells in normal adult human liver. By stringent conditions of liver cell cultures, we isolated and characterized a population of human liver stem cells (HLSCs). HLSCs expressed the mesenchymal stem cell markers CD29, CD73, CD44, and CD90 but not the hematopoietic stem cell markers CD34, CD45, CD117, and CD133. HLSCs were also positive for vimentin and nestin, a stem cell marker. The absence of staining for cytokeratin-19, CD117, and CD34 indicated that HLSCs were not oval stem cells. In addition, HLSCs expressed albumin, alpha-fetoprotein, and in a small percentage of cells, cytokeratin-8 and cytokeratin-18, indicating a partial commitment to hepatic cells. HLSCs differentiated in mature hepatocytes when cultured in the presence of hepatocyte growth factor and fibroblast growth factor 4, as indicated by the expression of functional cytochrome P450, albumin, and urea production. Under this condition, HLSCs downregulated alpha-fetoprotein and expressed cytokeratin-8 and cytokeratin-18. HLSCs were also able to undergo osteogenic and endothelial differentiation when cultured in the appropriated differentiation media, but they did not undergo lipogenic differentiation. Moreover, HLSCs differentiated in insulin-producing islet-like structures. In vivo, HLSCs contributed to regeneration of the liver parenchyma in severe-combined immunodeficient mice. In conclusion, we here identified a pluripotent progenitor population in adult human liver that could provide a basis for cell therapy strategies.

414 citations


Journal ArticleDOI
TL;DR: The pulp tissue of the third molar may serve as a suitable source of multipotent stem cells for future tissue engineering strategies and cell-based therapies, even after cryopreservation.
Abstract: The current study aimed to prove that human dental pulp stem cells (hDPSCs) isolated from the pulp of third molars can show multilineage differentiation after cryopreservation. First, hDPSC were isolated via enzymatic procedures, and frozen in liquid nitrogen until use. After defrosting, cells were analyzed for proliferative potential and the expression of the stem cell marker STRO-1. Subsequently, cells were cultured in neurogenic, osteogenic/odontogenic, adipogenic, myogenic, and chondrogenic inductive media, and analyzed on basis of morphology, immunohistochemistry, and reverse transcriptase-polymerase chain reaction (RT-PCR) for specific marker genes. All data were replicated, and the results of the primary cells were compared to similar tests with an additional primary dental pulp stem cell strain, obtained from the National Institutes of Health (NIH). Results showed that our cell population could be maintained for at least 25 passages. The existence of stem/ progenitor cells in both cell strains was proven by the STRO-1 staining. Under the influence of the 5 different media, both cell strains were capable to advance into all 5 differentiation pathways. Still differences between both strains were found. In general, our primary culture performed better in myogenic differentiation, while the externally obtained cells were superior in the odontogenic/osteogenic and chondrogenic differentiation pathways. In conclusion, the pulp tissue of the third molar may serve as a suitable source of multipotent stem cells for future tissue engineering strategies and cell-based therapies, even after cryopreservation.

398 citations


Journal ArticleDOI
TL;DR: Comparison of data generated in this study to other stem cell types suggests that self-renewal in SSCs is regulated by distinctly different molecular mechanisms.
Abstract: Spermatogonial stem cells (SSCs) are the foundation for spermatogenesis and, thus, preservation of a species. Because of stem cell rarity, studying their self-renewal is greatly facilitated by in vitro culture of enriched biologically active cell populations. A recently developed culture method identified glial cell line-derived neurotrophic factor (GDNF) as the essential growth factor that supports in vitro self-renewal of SSCs and results in an increase in their number. This system is a good model to study mechanisms of stem cell self-renewal because of the well defined culture conditions, enriched cell population, and available transplantation assay. By withdrawing and replacing GDNF in culture medium, we identified regulated expression of many genes by using microarray analysis. The expression levels of six of these genes were dramatically decreased by GDNF withdrawal and increased by GDNF replacement. To demonstrate the biological significance of the identified GDNF-regulated genes, we examined the importance of the most responsive of the six, bcl6b, a transcriptional repressor. By using siRNA to reduce transcript levels, Bcl6b was shown to be crucial for SSC maintenance in vitro. Moreover, evaluation of Bcl6b-null male testes revealed degeneration and/or absence of active spermatogenesis in 24 ± 7% of seminiferous tubules. These data suggest that Bcl6b is an important molecule in SSC self-renewal and validate the biological relevance of the GDNF-regulated genes identified through microarray analysis. In addition, comparison of data generated in this study to other stem cell types suggests that self-renewal in SSCs is regulated by distinctly different molecular mechanisms.

389 citations


Journal ArticleDOI
TL;DR: It is shown that short‐term exposure of mesenchymal stem cells to HGF can induce the activation of its cognate Met receptor and the downstream effectors ERK1/2, p38MAPK, and PI3K/Akt, while long-term exposure to H GF resulted in cytoskeletal rearrangement, cell migration, and marked inhibition of proliferation through the arrest in the G1‐S checkpoint.
Abstract: Hepatocyte growth factor (HGF), a pleiotropic cytokine of mesenchymal origin promoting migration, proliferation, and survival in a wide spectrum of cells, can also modulate different biological responses in stem cells, but the mechanisms involved are not completely understood so far. In this context, we show that short-term exposure of mesenchymal stem cells (MSCs) to HGF can induce the activation of its cognate Met receptor and the downstream effectors ERK1/2, p38MAPK, and PI3K/Akt, while long-term exposure to HGF resulted in cytoskeletal rearrangement, cell migration, and marked inhibition of proliferation through the arrest in the G1-S checkpoint. When added to MSCs, the K252A tyrosine kinase inhibitor prevented HGF-induced responses. HGF's effect on MSC proliferation was reversed by p38 inhibitor SB203580, while the effects on cell migration were abrogated by PI3K inhibitor Wortmannin, suggesting that HGF acts through different pathways to determine its complex effects on MSCs. Prolonged treatment with HGF induced the expression of cardiac-specific markers (GATA-4, MEF2C, TEF1, desmin, alpha-MHC, beta-MHC, and nestin) with the concomitant loss of the stem cell markers nucleostemin, c-kit, and CD105.

386 citations


Journal ArticleDOI
TL;DR: It is observed that neurospheres are highly motile structures prone to fuse even under ostensibly 'clonal' culture conditions, which has implications for the use of 'cytospheres' as an assay in other organ systems and with other cell types, both normal and neoplastic.
Abstract: For more than a decade the 'neurosphere assay' has been used to define and measure neural stem cell (NSC) behavior, with similar assays now used in other organ systems and in cancer. We asked whether neurospheres are clonal structures whose diameter, number and composition accurately reflect the proliferation, self-renewal and multipotency of a single founding NSC. Using time-lapse video microscopy, coculture experiments with genetically labeled cells, and analysis of the volume of spheres, we observed that neurospheres are highly motile structures prone to fuse even under ostensibly 'clonal' culture conditions. Chimeric neurospheres were prevalent independent of ages, species and neural structures. Thus, the intrinsic dynamic of neurospheres, as conventionally assayed, introduces confounders. More accurate conditions (for example, plating a single cell per miniwell) will be crucial for assessing clonality, number and fate of stem cells. These cautions probably have implications for the use of 'cytospheres' as an assay in other organ systems and with other cell types, both normal and neoplastic.

378 citations


Journal ArticleDOI
TL;DR: The data suggest that human embryonic stem cell medium can be used to isolate and expand human adult stem cells, and these cells appear to be located in the bulge area of human hair follicles.
Abstract: Hair follicles are known to contain a well-characterized niche for adult stem cells: the bulge, which contains epithelial and melanocytic stem cells. Using human embryonic stem cell culture conditions, we isolated a population of adult stem cells from human hair follicles that are distinctively different from known epithelial or melanocytic stem cells. These cells do not express squamous or melanocytic markers but express neural crest and neuron stem cell markers as well as the embryonic stem cell transcription factors Nanog and Oct4. These precursor cells proliferate as spheres, are capable of self-renewal, and can differentiate into multiple lineages. Differentiated cells not only acquire lineage-specific markers but also demonstrate appropriate functions in ex vivo conditions. Most of the Oct4-positive cells in human skin were located in the area highlighted by cytokeratin 15 staining in vivo. Our data suggest that human embryonic stem cell medium can be used to isolate and expand human adult stem cells. Using this method, we isolated a novel population of multipotent adult stem cells from human hair follicles, and these cells appear to be located in the bulge area. Human hair follicles may provide an accessible, autologous source of adult stem cells for therapeutic application.

Journal ArticleDOI
TL;DR: A previously uncharacterized heterocycle, SC1, was discovered that allows one to propagate murine ES cells in an undifferentiated, pluripotent state under chemically defined conditions in the absence of feeder cells, serum, and leukemia inhibitory factor.
Abstract: A cell-based screen of chemical libraries was carried out to identify small molecules that control the self-renewal of ES cells. A previously uncharacterized heterocycle, SC1, was discovered that allows one to propagate murine ES cells in an undifferentiated, pluripotent state under chemically defined conditions in the absence of feeder cells, serum, and leukemia inhibitory factor. Long-term SC1-expanded murine ES cells can be differentiated into cells of the three primary germ layers in vitro and also can generate chimeric mice and contribute to the germ line in vivo. Biochemical and cellular experiments suggest that SC1 works through dual inhibition of RasGAP and ERK1. Molecules of this kind may not only facilitate practical applications of stem cells in research and therapy, but also provide previously undescribed insights into the complex biology of stem cells.

Journal ArticleDOI
TL;DR: These cells are poorly defined and pose challenges in their identification and isolation, particularly since they are few in number, and will provide us an accessible target for drug resistance in cancer therapy.

Journal ArticleDOI
TL;DR: It is indicated that PDL cells possess crucial stem cell properties, such as self-renewal and multipotency, and express the mesenchymal stem cell markers CD105, CD166, and STRO-1 on their cell surface, although there were some variations.
Abstract: Periodontitis is an infectious diseaseinvolving periodontal ligament andbone,whichischaracterizedbygingivalinflammation and periodontal attach-ment loss, eventually leading to toothloss.Theperiodontalligament(PDL)isan unmineralized connective tissue thatconnects the alveolar bone to teeth.PDL cells consist of heterogeneous cellpopulations with fibroblastic or oste-oblastic properties (1–6). Previousstudies indicate that PDL cells possessthe potential to form mineralized nod-ules in vitro (7), to express bone-relatedmarkers, such as bone sialoprotein andosteocalcin (8), and to express charac-teristic bone regulatory hormone re-sponses (9). Thus, it is very likely thatPDL cells include cell populations atdifferent stages of differentiation andlineage commitment. The isolation andcharacterization of cell phenotypes thatare effective for periodontal regener-ation in the PDL cell population is def-initely needed. Recently, Seo et al.reported that PDL cells contain stemcells that have the potential to form ce-mentum/PDL-liketissueinvivoandthatthe application of PDL stem cells maybeeffectiveforperiodontalregenerativetherapy(10).However,thepropertiesofPDLstemcellsarenotfullyunderstood.A number of studies have shownthat bone marrow-derived mesenchy-mal stem cells (MSCs), which possesscharacteristics of self-renewal andmultilineage differentiation potential,are suitable for regenerative therapiessuch as the treatment of osteogenesisimperfecta or bone/cartilage defects(11). Kawaguchi et al. reported thatthe transplantation of bone marrow-derived MSCs into partial periodontaldefects was effective for periodontalregeneration (12).MSCs can proliferate rapidly anddifferentiate into osteoblasts, adipo-cytes, chondrocytes, and (possibly)Nagatomo K, Komaki M, Sekiya I, Sakaguchi Y, Noguchi K, Oda S, Muneta T,Ishikawa I. Stem cell properties of human periodontal ligament cells. J Periodont Res2006; 41: 303–310. Blackwell Munksgaard 2006Background and Objective: Stem cells have been used for regenerative therapies invarious fields. The proportion of cells that possess stem cell properties in humanperiodontal ligament (PDL) cells is not yet well understood. In this study, wequantitatively characterized human PDL cells to clarify their stem cell properties,including self-renewal, multipotency, and stem cell marker expression.Material and Methods: PDL cells were obtained from extracted premolar orwisdom teeth, following which a proliferation assay for self-renewal, a differenti-ation assay for multipotency, immunostaining for STRO-1, and fluorescence-activated cell sorter (FACS) analysis for stem cell markers (including CD105,CD166, and STRO-1) were performed.Results: Approximately 30% of 400 PDL cells were found to possess replicativepotential and formed single-cell colonies, and 30% of these colonies displayedpositive staining for STRO-1, 20% differentiated into adipocytes and 30% dif-ferentiated into osteoblasts. FACS analysis revealed that PDL cells, including cellpopulations, expressed the stem cell markers CD105, CD166, and STRO-1.Conclusion: The findings of this study indicated that PDL cells possess crucialstem cell properties, such as self-renewal and multipotency, and express themesenchymal stem cell markers CD105, CD166, and STRO-1 on their cell surface,although there were some variations. Thus, PDL cells can be used for periodontalregenerative procedures.

Journal ArticleDOI
TL;DR: The isolation of multipotent stem cell–like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and display extensive self-renewal capacity in sphere cultures are described.
Abstract: Given their accessibility, multipotent skin-derived cells might be useful for future cell replacement therapies. We describe the isolation of multipotent stem cell-like cells from the adult trunk skin of mice and humans that express the neural crest stem cell markers p75 and Sox10 and display extensive self-renewal capacity in sphere cultures. To determine the origin of these cells, we genetically mapped the fate of neural crest cells in face and trunk skin of mouse. In whisker follicles of the face, many mesenchymal structures are neural crest derived and appear to contain cells with sphere-forming potential. In the trunk skin, however, sphere-forming neural crest-derived cells are restricted to the glial and melanocyte lineages. Thus, self-renewing cells in the adult skin can be obtained from several neural crest derivatives, and these are of distinct nature in face and trunk skin. These findings are relevant for the design of therapeutic strategies because the potential of stem and progenitor cells in vivo likely depends on their nature and origin.

Journal ArticleDOI
TL;DR: It is proposed that Lrig1 maintains epidermal stem cells in a quiescent nondividing state, and that L rig1 down-regulation triggers proliferation.
Abstract: Considerable progress has been made in characterizing epidermal stem cells by microarray analysis of FACS-selected populations. One limitation of this approach is that the gene expression profiles represent the average of the cell population, potentially masking cellular heterogeneity of functional significance. To overcome this problem, we have performed single-cell expression profiling. We have generated cDNA libraries from single human epidermal cells, designated as stem or transit-amplifying cells on the basis of Delta1 and melanoma-associated chondroitin sulfate proteoglycan expression. Of the 14 putative stem cell markers identified, we selected one, the EGF receptor antagonist leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), for further study. Lrig1 was expressed in groups of basal cells in human interfollicular epidermis previously identified as enriched for stem cells. Overexpression of Lrig1 decreased keratinocyte proliferation but did not affect the proportion of stem and transit-amplifying cells, as judged by clonal growth characteristics. Down-regulation of Lrig1 using siRNA increased cell-surface EGF receptor levels, enhanced activation of downstream pathways, and stimulated proliferation. Lrig1 acted in part by negatively regulating the Myc promoter. We propose that Lrig1 maintains epidermal stem cells in a quiescent nondividing state, and that Lrig1 down-regulation triggers proliferation.

Journal ArticleDOI
TL;DR: The ALDH expression assay is an effective method for direct identification of NSCs, and improvement of the stem cell isolation protocol may be useful in the development of a cell‐mediated therapeutic strategy for neurodegenerative diseases.
Abstract: Stem cells are undifferentiated cells defined by their ability to self-renew and differentiate to progenitors and terminally differentiated cells. Stem cells have been isolated from almost all tissues, and an emerging idea is that they share common characteristics such as the presence of ATP-binding cassette transporter G2 and high telomerase and aldehyde dehydrogenase (ALDH) activity, raising the hypothesis of a set of universal stem cell markers. In the present study, we describe the isolation of primitive neural stem cells (NSCs) from adult and embryonic murine neurospheres and dissociated tissue, based on the expression of high levels of ALDH activity. Single-cell suspension was stained with a fluorescent ALDH substrate termed Aldefluor and then analyzed by flow cytometry. A population of cells with low side scatter (SSClo) and bright ALDH (ALDHbr) activity was isolated. SSCloALDHbr cells are capable of self-renewal and are able to generate new neurospheres and neuroepithelial stem-like cells. Furthermore, these cells are multipotent, differentiating both in neurons and macroglia, as determined by immunocytochemistry and real-time reverse transcription–polymerase chain reaction analysis. To evaluate the engraftment potential of SSCloALDHbr cells in vivo, we transplanted them into mouse brain. Donor-derived neurons with mature morphology were detected in the cortex and subcortical areas, demonstrating the capacity of this cell population to differentiate appropriately in vivo. The ALDH expression assay is an effective method for direct identification of NSCs, and improvement of the stem cell isolation protocol may be useful in the development of a cell-mediated therapeutic strategy for neurodegenerative diseases.

Journal ArticleDOI
15 Mar 2006-Blood
TL;DR: EPCR represents the first known marker that 'explicitly' identifies hematopoietic stem cells within murine bone marrow, and evaluation of cell populations first enriched for stem cell activity by conventional methods and subsequently fractionated on the basis of EPCR expression indicates that stemcell activity is always associated with EPCr-expressing cells.

Journal ArticleDOI
TL;DR: The results indicate that hES cells have a unique epigenetic signature that may contribute to their developmental potential and can be used as biomarkers to monitor differentiation.
Abstract: Human embryonic stem (hES) cells originate during an embryonic period of active epigenetic remodeling. DNA methylation patterns are likely to be critical for their self-renewal and pluripotence. We compared the DNA methylation status of 1536 CpG sites (from 371 genes) in 14 independently isolated hES cell lines with five other cell types: 24 cancer cell lines, four adult stem cell populations, four lymphoblastoid cell lines, five normal human tissues, and an embryonal carcinoma cell line. We found that the DNA methylation profile clearly distinguished the hES cells from all of the other cell types. A subset of 49 CpG sites from 40 genes contributed most to the differences among cell types. Another set of 25 sites from 23 genes distinguished hES cells from normal differentiated cells and can be used as biomarkers to monitor differentiation. Our results indicate that hES cells have a unique epigenetic signature that may contribute to their developmental potential.

Journal ArticleDOI
TL;DR: Observations indicate that the Wnt signal mediated by the canonical pathway is not sufficient but enhances the effect of LIF to maintain self-renewal of mouse ES cells.

Journal ArticleDOI
TL;DR: ADSCs have a similar hepatogenic differentiation potential to BMSC, but a longer culture period and higher proliferation capacity, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing.
Abstract: AIM: To investigate and compare the hepatogenic transdifferentiation of adipose tissue-derived stem cells (ADSC) and bone marrow-derived mesenchymal stem cells (BMSC) in vitro. Transdifferentiation of BMSC into hepatic cells in vivo has been described. Adipose tissue represents an accessible source of ADSC, with similar characteristics to BMSC. METHODS: BMSCs were obtained from patients undergoing total hip arthroplasty and ADSC from human adipose tissue obtained from lipectomy. Cells were grown in medium containing 15% human serum. Cultures were serum deprived for 2 d before cultivating under similar pro-hepatogenic conditions to those of liver development using a 2-step protocol with sequential addition of growth factors, cytokines and hormones. Hepatic differentiation was RT-PCR-assessed and liver-marker genes were immunohistochemically analysed. RESULTS: BMSC and ADSC exhibited a fibroblastic morphology that changed to a polygonal shape when cells differentiated. Expression of stem cell marker Thy1 decreased in differentiated ADSC and BMSC. However, the expression of the hepatic markers, albumin and CYPs increased to a similar extent in differentiated BMSC and ADSC. Hepatic gene activation could be attributed to increased liver-enriched transcription factors (C/EBPβ and HNF4α), as demonstrated by adenoviral expression vectors. CONCLUSION: Mesenchymal stem cells can be induced to hepatogenic transdifferentiation in vitro. ADSCs have a similar hepatogenic differentiation potential to BMSC, but a longer culture period and higher proliferation capacity. Therefore, adipose tissue may be an ideal source of large amounts of autologous stem cells, and may become an alternative for hepatocyte regeneration, liver cell transplantation or preclinical drug testing.

Journal ArticleDOI
01 Dec 2006-Glia
TL;DR: The assertion that MSCs can be differentiated into cells that are Schwann cell‐like in terms of both phenotype and function is supported.
Abstract: We have investigated the phenotypic and bioassay characteristics of bone marrow mesenchymal stromal cells (MSCs) differentiated along a Schwann cell lineage using glial growth factor. Expression of the Schwann cell markers S100, P75, and GFAP was determined by immunocytochemical staining and Western blotting. The levels of the stem cell markers Stro-1 and alkaline phosphatase and the neural progenitor marker nestin were also examined throughout the differentiation process. The phenotypic properties of cells differentiated at different passages were also compared. In addition to a phenotypic characterization, the functional ability of differentiated MSCs has been investigated employing a co-culture bioassay with dissociated primary sensory neurons. Following differentiation, MSCs underwent morphological changes similar to those of cultured Schwann cells and stained positively for all three Schwann cell markers. Quantitative Western blot analysis showed that the levels of S100 and P75 protein were significantly elevated upon differentiation. Differentiated MSCs were also found to enhance neurite outgrowth in co-culture with sensory neurons to a level equivalent or superior to that produced by Schwann cells. These findings support the assertion that MSCs can be differentiated into cells that are Schwann cell-like in terms of both phenotype and function.

Journal ArticleDOI
TL;DR: It is suggested that DC targeting of CSC provides a higher level of protection against GL261 gliomas, a finding with potential implications for the design of clinical trials based on DC vaccination.
Abstract: Cancer stem–like cells (CSC) could be a novel target for cancer therapy, including dendritic cell (DC) immunotherapy. To address this, we developed experiments aimed at DC targeting of neurospheres (NS) from GL261 glioma cells because neurospheres can be enriched in CSC. We obtained murine neurospheres by growing GL261 cells in epidermal growth factor/basic fibroblast growth factor without serum. GL261NS recapitulated important features of glioblastoma CSC and expressed higher levels of radial glia stem cell markers than GL261 cells growing under standard conditions (GL261 adherent cells, GL261-AC), as assessed by DNA microarray and real-time PCR. GL261-NS brain gliomas were highly infiltrating and more rapidly lethal than GL261-AC, as evidenced by survival analysis (P < 0.0001), magnetic resonance imaging and histology. DC from the bone marrow of syngeneic mice were then used for immunotherapy of GL261-NS and GL261-AC tumors. Strikingly, DC loaded with GL261-NS (DC-NS) cured 80% and 60% of GL261-AC and GL261-NS tumors, respectively (P < 0.0001), whereas DC-AC cured only 50% of GL261-AC tumors (P = 0.0022) and none of the GL261-NS tumors. GL261-NS expressed higher levels of MHC and costimulatory molecules (CD80 and CD86) than GL261-AC; the JAM assay indicated that DC-NS splenocytes had higher lytic activity than DC-AC splenocytes on both GL261-NS and GL261-AC, and immunohistochemistry showed that DC-NS vaccination was associated with robust tumor infiltration by CD8+ and CD4+ T lymphocytes. These findings suggest that DC targeting of CSC provides a higher level of protection against GL261 gliomas, a finding with potential implications for the design of clinical trials based on DC vaccination. (Cancer Res 2006; 66(21): 10247-52)

Journal ArticleDOI
TL;DR: Genetic fate mapping of postnatal GFAP+ cells reveals that they seed the postnatal brain with neural progenitors/stem cells that in turn give rise to neural precursors and their mature neuronal and oligodendrocytic progeny in many CNS regions, including the cerebral cortex.
Abstract: To identify the fates that astroglial cells can attain in the postnatal brain, we generated mice carrying an inducible Cre recombinase (Cre-ERT2) controlled by the human GFAP promoter ( hGFAP ). In mice carrying the GCE (hGFAP-Cre-ERT2) transgene, OHT (4-hydroxy-tamoxifen) injections induced Cre recombination in astroglial cells at postnatal day 5 and allowed us to permanently tag these cells with reporter genes. Three days after recombination, reporter-tagged cells were quiescent astroglial cells that expressed the stem cell marker LeX in the subventricular zone (SVZ) and dentate gyrus (DG). After 2–4 weeks, the tagged GFAP lineage included proliferating progenitors expressing the neuronal marker Dcx (Doublecortin) in the SVZ and the DG. After 4 weeks, the GFAP lineage generated mature neurons in the olfactory bulb (OB), DG, and, strikingly, also in the cerebral cortex. A major portion of all neurons in the DG and OB born at the end of the first postnatal week were generated from GFAP+ cells. In addition to neurons, mature oligodendrocytes and astrocytes populating the cerebral cortex and white matter were also the progeny of GFAP+ astroglial ancestors. Thus, genetic fate mapping of postnatal GFAP+ cells reveals that they seed the postnatal brain with neural progenitors/stem cells that in turn give rise to neural precursors and their mature neuronal and oligodendrocytic progeny in many CNS regions, including the cerebral cortex.

Journal ArticleDOI
TL;DR: Differences in immune cell composition of the diagnostic FL lymph node immune microenvironment have the potential for use as prognostic biomarkers in a routine histopathology setting.
Abstract: Purpose To examine the immune microenvironment in diagnostic follicular lymphoma (FL) biopsies and evaluate its prognostic significance. Patients and Methods Immunohistochemistry was used to study numbers and location of cells staining positive for immune cell markers CD4, CD7, CD8, CD25, CD68, forkhead box protein P3 (FOXP3), T-cell intracellular antigen-1, and Granzyme B in tissue microarrays of paraffin-embedded, diagnostic lymph node biopsies taken from 59 FL patients who lived less than 5 years (short-survival group; n = 34) and more than 15 years (long-survival group; n = 25). Results CD4 and FOXP3 expression were significantly different between the two groups. Samples from the long-survival group were more likely than those from the short-survival group to have CD4+ staining cells and to have FOXP3-positive cells in a perifollicular location. Conclusion This study has identified differences in immune cell composition of the diagnostic FL lymph node immune microenvironment and these have the potenti...

Journal ArticleDOI
15 Jul 2006-Blood
TL;DR: The robustness with which SLAM family markers distinguish progenitors at different stages of the hematopoiesis hierarchy and enhance the purification of definitive HSCs from diverse contexts is emphasized.

Journal ArticleDOI
TL;DR: The results show that it is possible to culture hES cells homogeneously while keeping their undifferentiated state as confirmed by the expression of stem cell markers octamer binding protein 4 (Oct-4) and alkaline phosphatase (ALP).

Journal ArticleDOI
TL;DR: Data suggest that the cell-surface marker MTS24 identifies a new reservoir of hair follicle keratinocytes with a proliferative capacity and gene expression profile suggestive of progenitor or stem cells.
Abstract: We describe a novel murine progenitor cell population localised to a previously uncharacterised region between sebaceous glands and the hair follicle bulge, defined by its reactivity to the thymic epithelial progenitor cell marker MTS24. MTS24 labels a membrane-bound antigen present during the early stages of hair follicle development and in adult mice. MTS24 co-localises with expression of α6-integrin and keratin 14, indicating that these cells include basal keratinocytes. This novel population does not express the bulge-specific stem cell markers CD34 or keratin 15, and is infrequently BrdU label retaining. MTS24-positive and -negative keratinocyte populations were isolated by flow cytometry and assessed for colony-forming efficiency. MTS24-positive keratinocytes exhibited a two-fold increase in colony formation and colony size compared to MTS24-negative basal keratinocytes. In addition, both the MTS24-positive and CD34-positive subpopulations were capable of producing secondary colonies after serial passage of individual cell clones. Finally, gene expression profiles of MTS24 and CD34 subpopulations were compared. These results showed that the overall gene expression profile of MTS24-positive cells resembles the pattern previously reported in bulge stem cells. Taken together, these data suggest that the cell-surface marker MTS24 identifies a new reservoir of hair follicle keratinocytes with a proliferative capacity and gene expression profile suggestive of progenitor or stem cells.

Journal ArticleDOI
TL;DR: This work has yielded new insights into skin tumour development and the mechanisms by which stem cells are maintained and the pathways that interact with Wnt signalling to specify lineage choice as cells leave the stem cell compartment.

Journal ArticleDOI
TL;DR: Intravenous transfusion of spleen-derived MNCs improves endothelium-dependent vasodilation in atherosclerotic apoE−/− mice, indicating an important role of circulating progenitor cells for the repair of ongoing vascular injury.
Abstract: Endothelial dysfunction is characterized by abnormalities in vasoreactivity and is a marker of the extent of atherosclerosis. Cellular repair by circulating progenitor cells of ongoing vascular injury may be essential for vascular integrity and function and may limit abnormalities in vasoreactivity. Apolipoprotein E-deficient (apoE-/-) mice were splenectomized and treated with high-cholesterol diet for 5 weeks, resulting in marked impairment of endothelium-dependent vasodilation of aortic segments as compared with wild-type mice. Intravenous transfusion of 2x10(7) spleen-derived mononuclear cells (MNCs) isolated from wild-type mice on 3 consecutive days restored endothelium-dependent vasodilation in the apoE-/- mice, as measured 7, 14, and 45 days after transfusion. Histological analyses of aortic tissue identified fluorescent-labeled, exogenously applied progenitor cells that expressed the endothelial cell marker CD31 in the endothelial cell layer of atherosclerotic lesions. Progenitor cell treatment led to increased vascular nitric oxide synthase activity. Transfusion of either in vitro-differentiated Dil-Ac-LDL/lectin-positive endothelial progenitor cells, CD11b-positive (monocyte marker), CD45R-positive (B-cell marker), or Sca-1-positive (stem cell marker) MNC subpopulations significantly improved endothelium-dependent vasodilation, although these treatments were not as effective as transfusion of total MNCs. Depletion of MNCs of either CD11b-positive, CD45R-positive, or Sca-1-positive cells resulted in significant attenuation of endothelium-dependent vasodilation as compared with nondepleted MNCs; however, vasoreactivity was still significantly improved as compared with saline-treated apoE-/- mice. Intravenous transfusion of spleen-derived MNCs improves endothelium-dependent vasodilation in atherosclerotic apoE-/- mice, indicating an important role of circulating progenitor cells for the repair of ongoing vascular injury. More than 1 subpopulation of the MNC fraction seems to be involved in this effect.