scispace - formally typeset
Search or ask a question

Showing papers on "Transgene published in 2015"


Journal ArticleDOI
TL;DR: A highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR).
Abstract: Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda.

844 citations


Journal ArticleDOI
TL;DR: It is shown that doxycycline-regulated Cas9 induction enables widespread gene disruption in multiple tissues and that limiting the duration of Cas9 expression or using a Cas9D10A (Cas9n) variant can regulate the frequency and size of target gene modifications, respectively.
Abstract: CRISPR-Cas9-based genome editing enables the rapid genetic manipulation of any genomic locus without the need for gene targeting by homologous recombination. Here we describe a conditional transgenic approach that allows temporal control of CRISPR-Cas9 activity for inducible genome editing in adult mice. We show that doxycycline-regulated Cas9 induction enables widespread gene disruption in multiple tissues and that limiting the duration of Cas9 expression or using a Cas9(D10A) (Cas9n) variant can regulate the frequency and size of target gene modifications, respectively. Further, we show that this inducible CRISPR (iCRISPR) system can be used effectively to create biallelic mutation in multiple target loci and, thus, provides a flexible and fast platform to study loss-of-function phenotypes in vivo.

462 citations


Journal ArticleDOI
TL;DR: A drug-inducible small guide RNA (sgRNA) vector system allowing for ubiquitous and efficient gene deletion in murine and human cells mediates the efficient, temporally controlled deletion of MCL-1 in human Burkitt lymphoma cell lines that require this anti-apoptotic BCL-2 protein for sustained survival and growth.

317 citations


Journal ArticleDOI
TL;DR: Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex, suggesting reasons for specificity of cortical dysfunction in FTDP17.

235 citations


Journal ArticleDOI
15 Jan 2015-Nature
TL;DR: Transgene integration as a 2A-fusion to a highly expressed endogenous gene may obviate the requirement for nucleases and/or vector-borne promoters, and may allow for safe and efficacious gene targeting in both infants and adults by greatly diminishing off-target effects while still providing therapeutic levels of expression from integration.
Abstract: Site-specific gene addition can allow stable transgene expression for gene therapy. When possible, this is preferred over the use of promiscuously integrating vectors, which are sometimes associated with clonal expansion and oncogenesis. Site-specific endonucleases that can induce high rates of targeted genome editing are finding increasing applications in biological discovery and gene therapy. However, two safety concerns persist: endonuclease-associated adverse effects, both on-target and off-target; and oncogene activation caused by promoter integration, even without nucleases. Here we perform recombinant adeno-associated virus (rAAV)-mediated promoterless gene targeting without nucleases and demonstrate amelioration of the bleeding diathesis in haemophilia B mice. In particular, we target a promoterless human coagulation factor IX (F9) gene to the liver-expressed mouse albumin (Alb) locus. F9 is targeted, along with a preceding 2A-peptide coding sequence, to be integrated just upstream to the Alb stop codon. While F9 is fused to Alb at the DNA and RNA levels, two separate proteins are synthesized by way of ribosomal skipping. Thus, F9 expression is linked to robust hepatic albumin expression without disrupting it. We injected an AAV8-F9 vector into neonatal and adult mice and achieved on-target integration into ∼0.5% of the albumin alleles in hepatocytes. We established that F9 was produced only from on-target integration, and ribosomal skipping was highly efficient. Stable F9 plasma levels at 7-20% of normal were obtained, and treated F9-deficient mice had normal coagulation times. In conclusion, transgene integration as a 2A-fusion to a highly expressed endogenous gene may obviate the requirement for nucleases and/or vector-borne promoters. This method may allow for safe and efficacious gene targeting in both infants and adults by greatly diminishing off-target effects while still providing therapeutic levels of expression from integration.

227 citations


Journal ArticleDOI
22 Sep 2015-PLOS ONE
TL;DR: It is demonstrated that osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling cancellous bone.
Abstract: The cytokine receptor activator of nuclear factor kappa B ligand (RANKL), encoded by the Tnfsf11 gene, is essential for osteoclastogenesis and previous studies have shown that deletion of the Tnfsf11 gene using a Dmp1-Cre transgene reduces osteoclast formation in cancellous bone by more than 70%. However, the Dmp1-Cre transgene used in those studies leads to recombination in osteocytes, osteoblasts, and lining cells making it unclear whether one or more of these cell types produce the RANKL required for osteoclast formation in cancellous bone. Because osteoblasts, osteocytes, and lining cells have distinct locations and functions, distinguishing which of these cell types are sources of RANKL is essential for understanding the orchestration of bone remodeling. To distinguish between these possibilities, we have now created transgenic mice expressing the Cre recombinase under the control of regulatory elements of the Sost gene, which is expressed in osteocytes but not osteoblasts or lining cells in murine bone. Activity of the Sost-Cre transgene in osteocytes, but not osteoblast or lining cells, was confirmed by crossing Sost-Cre transgenic mice with tdTomato and R26R Cre-reporter mice, which express tdTomato fluorescent protein or LacZ, respectively, only in cells expressing the Cre recombinase or their descendants. Deletion of the Tnfsf11 gene in Sost-Cre mice led to a threefold decrease in osteoclast number in cancellous bone and increased cancellous bone mass, mimicking the skeletal phenotype of mice in which the Tnfsf11 gene was deleted using the Dmp1-Cre transgene. These results demonstrate that osteocytes, not osteoblasts or lining cells, are the main source of the RANKL required for osteoclast formation in remodeling cancellous bone.

225 citations


Journal ArticleDOI
02 Dec 2015-Neuron
TL;DR: A line of mice carrying a bacterial artificial chromosome containing exons 1 to 6 of the human C9ORF72 gene with approximately 500 repeats of the GGGGCC motif showed distinctive histopathological features of C9orF72 ALS/FTD, including sense and antisense intranuclear RNA foci and poly(glycine-proline) dipeptide repeat proteins.

219 citations


Journal ArticleDOI
TL;DR: It is shown that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system, and the proof of principle of curing a genetic disease via gene correction in S SCs is provided.
Abstract: Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic editing techniques. Here, we show that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system. We used the CRISPR-Cas9 system to mutate an EGFP transgene or the endogenous Crygc gene in SCCs. The mutated SSCs underwent spermatogenesis after transplantation into the seminiferous tubules of infertile mouse testes. Round spermatids were generated and, after injection into mature oocytes, supported the production of heterozygous offspring displaying the corresponding mutant phenotypes. Furthermore, a disease-causing mutation in Crygc (Crygc(-/-)) that pre-existed in SSCs could be readily repaired by CRISPR-Cas9-induced nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in SSC lines carrying the corrected gene with no evidence of off-target modifications as shown by whole-genome sequencing. Fertilization using round spermatids generated from these lines gave rise to offspring with the corrected phenotype at an efficiency of 100%. Our results demonstrate efficient gene editing in mouse SSCs by the CRISPR-Cas9 system, and provide the proof of principle of curing a genetic disease via gene correction in SSCs.

210 citations


Journal ArticleDOI
TL;DR: Treatment of AngII-infused c-hNox4Tg mice with GKT137831, a Nox4/Nox1 inhibitor, abolished the increase in oxidative stress, suppressed the Akt-mTOR and NF&kgr;B signaling pathways, and attenuated cardiac remodeling.
Abstract: Background—NADPH oxidase 4 (Nox4) has been implicated in cardiac remodeling, but its precise role in cardiac injury remains controversial. Furthermore, little is known about the downstream effector signaling pathways activated by Nox4-derived reactive oxygen species in the myocardium. We investigated the role of Nox4 and Nox4-associated signaling pathways in the development of cardiac remodeling. Methods and Results—Cardiac-specific human Nox4 transgenic mice (c-hNox4Tg) were generated. Four groups of mice were studied: (1) control mice, littermates that are negative for hNox4 transgene but Cre positive; (2) c-hNox4 Tg mice; (3) angiotensin II (AngII)–infused control mice; and (4) c-hNox4Tg mice infused with AngII. The c-hNox4Tg mice exhibited an ≈10-fold increase in Nox4 protein expression and an 8-fold increase in the production of reactive oxygen species, and manifested cardiac interstitial fibrosis. AngII infusion to control mice increased cardiac Nox4 expression and induced fibrosis and hypertrophy. ...

196 citations


Journal ArticleDOI
TL;DR: A genetically encoded system for remote regulation of gene expression by low-frequency radio waves (RFs) or a magnetic field is reported, showing that TRPV1 can transduce a mechanical stimulus and initiates calcium-dependent transgene expression.
Abstract: Means for temporally regulating gene expression and cellular activity are invaluable for elucidating underlying physiological processes and would have therapeutic implications. Here we report the development of a genetically encoded system for remote regulation of gene expression by low-frequency radio waves (RFs) or a magnetic field. Iron oxide nanoparticles are synthesized intracellularly as a GFP-tagged ferritin heavy and light chain fusion. The ferritin nanoparticles associate with a camelid anti-GFP-transient receptor potential vanilloid 1 fusion protein, αGFP-TRPV1, and can transduce noninvasive RF or magnetic fields into channel activation, also showing that TRPV1 can transduce a mechanical stimulus. This, in turn, initiates calcium-dependent transgene expression. In mice with stem cell or viral expression of these genetically encoded components, remote stimulation of insulin transgene expression with RF or a magnet lowers blood glucose. This robust, repeatable method for remote regulation in vivo may ultimately have applications in basic science, technology and therapeutics.

187 citations


Journal ArticleDOI
TL;DR: Increased levels of the mitochondria-shaping protein Opa1 improve respiratory chain efficiency and protect from tissue damage, suggesting that it could be an attractive target to counteract mitochondrial dysfunction.

Journal ArticleDOI
TL;DR: Efficient targeted gene integration into site-specific loci in CHO cells is demonstrated using CRISPR/Cas9 genome editing system and compatible donor plasmid harboring a gene of interest (GOI) and short homology arms, resulting in homogeneous transgene expression.
Abstract: Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for production of therapeutic proteins. However, development of recombinant CHO cell lines has been hampered by unstable and variable transgene expression caused by random integration. Here we demonstrate efficient targeted gene integration into site-specific loci in CHO cells using CRISPR/Cas9 genome editing system and compatible donor plasmid harboring a gene of interest (GOI) and short homology arms. This strategy has enabled precise insertion of a 3.7-kb gene expression cassette at defined loci in CHO cells following a simple drug-selection, resulting in homogeneous transgene expression. Taken together, the results displayed here can help pave the way for the targeting of GOI to specific loci in CHO cells, increasing the likelihood of generating isogenic cell lines with consistent protein production.

Journal ArticleDOI
TL;DR: By combining quantitative clonal analyses with definitive markers of differentiation, it is demonstrated that the vast majority of individual NC cells are multipotent, with only few clones contributing to single derivatives.

Journal ArticleDOI
TL;DR: Modulating the neutrophil-specific locus Ly6G with a knock-in allele expressing Cre recombinase and the fluorescent protein tdTomato generated a mouse model termed Catchup that exhibits strong neutrophill specificity, suggesting a cell-intrinsic role for activating Fc receptors in neutrophils trafficking.
Abstract: Cre recombinase and tdTomato expressed from a neutrophil-specific promoter allow highly specific genetic manipulation and labeling of neutrophils.

Journal ArticleDOI
TL;DR: It is shown that intracerebral injections of preformed synthetic tau fibrils into the hippocampus or frontal cortex of young tau transgenic mice expressing mutant human P301L tau induces tau hyperphosphorylation and aggregation around the site of injection, as well as a time-dependent propagation of tau pathology to interconnected brain areas distant from the injection site.

Journal ArticleDOI
TL;DR: The genetic approach in Drosophila melanogaster provides the first evidence, to the authors' knowledge, that bombesin receptor signaling with its endogenous ligand promotes insulin production and that this pathway is essential for the coordination of systemic growth with nutritional availability.
Abstract: The coordination of growth with nutritional status is essential for proper development and physiology. Nutritional information is mostly perceived by peripheral organs before being relayed to the brain, which modulates physiological responses. Hormonal signaling ensures this organ-to-organ communication, and the failure of endocrine regulation in humans can cause diseases including obesity and diabetes. In Drosophila melanogaster, the fat body (adipose tissue) has been suggested to play an important role in coupling growth with nutritional status. Here, we show that the peripheral tissue-derived peptide hormone CCHamide-2 (CCHa2) acts as a nutrient-dependent regulator of Drosophila insulin-like peptides (Dilps). A BAC-based transgenic reporter revealed strong expression of CCHa2 receptor (CCHa2-R) in insulin-producing cells (IPCs) in the brain. Calcium imaging of brain explants and IPC-specific CCHa2-R knockdown demonstrated that peripheral-tissue derived CCHa2 directly activates IPCs. Interestingly, genetic disruption of either CCHa2 or CCHa2-R caused almost identical defects in larval growth and developmental timing. Consistent with these phenotypes, the expression of dilp5, and the release of both Dilp2 and Dilp5, were severely reduced. Furthermore, transcription of CCHa2 is altered in response to nutritional levels, particularly of glucose. These findings demonstrate that CCHa2 and CCHa2-R form a direct link between peripheral tissues and the brain, and that this pathway is essential for the coordination of systemic growth with nutritional availability. A mammalian homologue of CCHa2-R, Bombesin receptor subtype-3 (Brs3), is an orphan receptor that is expressed in the islet β-cells; however, the role of Brs3 in insulin regulation remains elusive. Our genetic approach in Drosophila melanogaster provides the first evidence, to our knowledge, that bombesin receptor signaling with its endogenous ligand promotes insulin production.

Journal ArticleDOI
TL;DR: Novel negative regulators of ethylene signal transduction in Arabidopsis and maize are reported, which reduces plant sensitivity to ethylene, leading to enhanced drought tolerance and field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions.
Abstract: Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions.

Journal ArticleDOI
TL;DR: The findings show that muscle aging is associated with elevations of anti‐inflammatory M2a macrophages that can increase muscle fibrosis, and that the transgene may prevent age‐related Muscle fibrosis by inhibiting the arginase‐dependent profibrotic pathway.
Abstract: Muscle aging is associated with changes in myeloid cell phenotype that may influence age-related changes in muscle structure. We tested whether preventing age-related reductions in muscle neuronal nitric oxide synthase (nNOS) would obviate age-related changes in myeloid cells in muscle. Our findings show that muscle aging is associated with elevations of anti-inflammatory M2a macrophages that can increase muscle fibrosis. Expression of a muscle-specific nNOS transgene in mice prevented age-related increases in M2a macrophages. Transgene expression also reduced expression of collagens and decreased muscle fibrosis. The nNOS transgene prevented age-related increases in arginase-1 but did not influence TGFβ expression, indicating that the transgene may prevent age-related muscle fibrosis by inhibiting the arginase-dependent profibrotic pathway. Although aged satellite cells or fibro-adipogenic precursor (FAPs) cells also promote fibrosis, transgene expression had no effect on the expression of key signaling molecules that regulate fibrogenic activity of those cells. Finally, we tested whether increases in M2a macrophages and the associated increase in fibrosis were attributable to aging of myeloid lineage cells. Young bone marrow cells (BMCs) were transplanted into young or old mice, and muscles were collected 8 months later. Muscles of young mice receiving young BMCs showed no effect on M2a macrophage number or collagen accumulation compared to age-matched, nontransplanted controls. However, muscles of old mice receiving young BMCs showed fewer M2a macrophages and less accumulation of collagen. Thus, the age-related increase in M2a macrophages in aging muscle and the associated muscle fibrosis are determined in part by the age of bone marrow cells.

Journal ArticleDOI
TL;DR: In vitro and in vivo challenge and transmission experiments proved that the transgenic cattle are able to control the growth and multiplication of Mycobacterium bovis, turn on the apoptotic pathway of cell death instead of necrosis after infection, and efficiently resist the low dose of M.bovis transmitted from tuberculous cattle in nature.
Abstract: Transcription activator-like effector nuclease (TALEN)-mediated genome modification has been applied successfully to create transgenic animals in various species, such as mouse, pig, and even monkey. However, transgenic cattle with gene knockin have yet to be created using TALENs. Here, we report site-specific knockin of the transcription activator-like effector (TALE) nickase-mediated SP110 nuclear body protein gene (SP110) via homologous recombination to produce tuberculosis-resistant cattle. In vitro and in vivo challenge and transmission experiments proved that the transgenic cattle are able to control the growth and multiplication of Mycobacterium bovis, turn on the apoptotic pathway of cell death instead of necrosis after infection, and efficiently resist the low dose of M. bovis transmitted from tuberculous cattle in nature. In this study, we developed TALE nickases to modify the genome of Holstein-Friesian cattle, thereby engineering a heritable genome modification that facilitates resistance to tuberculosis.

Journal ArticleDOI
07 Oct 2015-PLOS ONE
TL;DR: In this paper, the authors describe mfap4 as a macrophage-specific promoter capable of producing transgenic lines in which transgene expression within larval macrophages remains stable throughout several days of infection.
Abstract: Transgenic labeling of innate immune cell lineages within the larval zebrafish allows for real-time, in vivo analyses of microbial pathogenesis within a vertebrate host. To date, labeling of zebrafish macrophages has been relatively limited, with the most specific expression coming from the mpeg1 promoter. However, mpeg1 transcription at both endogenous and transgenic loci becomes attenuated in the presence of intracellular pathogens, including Salmonella typhimurium and Mycobacterium marinum. Here, we describe mfap4 as a macrophage-specific promoter capable of producing transgenic lines in which transgene expression within larval macrophages remains stable throughout several days of infection. Additionally, we have developed a novel macrophage-specific Cre transgenic line under the control of mfap4, enabling macrophage-specific expression using existing floxed transgenic lines. These tools enrich the repertoire of transgenic lines and promoters available for studying zebrafish macrophage dynamics during infection and inflammation and add flexibility to the design of future macrophage-specific transgenic lines.

Journal ArticleDOI
TL;DR: The current status of epigenetic silencing in transgenic technology is discussed and summarized in this mini-review.
Abstract: Epigenetic silencing is a natural phenomenon in which the expression of gene is regulated through modifications of DNA, RNA or histone proteins. It is a mechanism for defending host genomes against the effects of transposable element, viral infection and acts as a modulator of expression of duplicated gene family members and as a silencer of transgenes. A major breakthrough in understanding the mechanism of epigenetic silencing was discovery of silencing in transgenic tobacco plants due to interaction between two homologous promoters. The molecular mechanism of epigenetic mechanism is highly complicated and it is not completely understood yet. Two different molecular routes have been proposed for this, i.e. transcriptional gene silencing (TGS), which is associated with heavy methylation of promoter regions and blocks the transcription of transgene. The basic mechanism underlying post-transcriptional gene silencing (PTGS) is degradation of the cytosolic mRNA of transgenes or endogenous genes. Undesired transgene silencing is of a major concern in transgenic technology used in crop improvement. A complete understanding of this phenomenon will be very useful for transgenic applications, where silencing of specific genes are required. The current status of epigenetic silencing in transgenic technology has been discussed and summarized in this mini-review.

Journal Article
TL;DR: This review discusses how viral vector expression cassettes can be engineered with elements to enhance target specificity and increase transgene expression to serve as a menu of vector genome design elements and their cost in terms of space to thoughtfully engineer viral vectors for gene therapy.
Abstract: Over the last five years, the number of clinical trials involving AAV (adeno-associated virus) and lentiviral vectors continue to increase by about 150 trials each year. For continued success, AAV and lentiviral expression cassettes need to be designed to meet each disease's specific needs. This review discusses how viral vector expression cassettes can be engineered with elements to enhance target specificity and increase transgene expression. The key differences relating to target specificity between ubiquitous and tissue-specific promoters are discussed, as well as how endogenous miRNAs and their target sequences have been used to restrict transgene expression. Specifically, relevant studies indicating how cis-acting elements such as introns, WPRE, polyadenylation signals, and the CMV enhancer are highlighted to show their utility for enhancing transgene expression in gene therapy applications. All discussion bears in mind that expression cassettes have space constraints. In conclusion, this review can serve as a menu of vector genome design elements and their cost in terms of space to thoughtfully engineer viral vectors for gene therapy.

Journal ArticleDOI
TL;DR: It is shown that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition, and can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla.
Abstract: Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops.

Journal ArticleDOI
TL;DR: In this article, the authors used chemically modified (nec) mRNA to deliver site-specific nucleases in a well-established transgenic mouse model of surfactant protein B (SP-B) deficiency.
Abstract: To the Editor: Genome editing using a variety of different nucleases holds great potential to knock out or repair disease-causing genes. An ideal nuclease delivery vehicle is short-lived, does not integrate into the genome and can enter target cells efficiently. These requirements have not yet been achieved simultaneously by any nuclease delivery vector. We and others have used modified mRNA, which is nonintegrating and provides a transient pulse of protein expression, as an alternative to traditional viral vectors1–5. This approach allowed us to deliver therapeutic proteins in mouse models of surfactant protein B (SP-B) deficiency3 and experimental asthma4. Here we apply nuclease-encoding, chemically modified (nec) mRNA to deliver site-specific nucleases in a well-established transgenic mouse model of SP-B deficiency6, in which SP-B cDNA is under the control of a tetracycline-inducible promoter7. Administration of doxycycline drives SP-B expression at levels similar to those in wild-type mice (Supplementary Fig. 1), whereas cessation of doxycycline leads to phenotypic changes similar to those of the human disease, including thickened alveolar walls, heavy cellular infiltration, increased macrophages and neutrophils, interstitial edema, augmented cytokines in the lavage, a decline in lung function and fatal respiratory distress leading to death within days8,9. We inserted a constitutive CAG promoter

Journal ArticleDOI
TL;DR: This work describes for the first time the generation of a site-specific knockin pig model using a combination of CRISPR/Cas9 and somatic cell nuclear transfer and reports a new genomic “safe harbor” locus, named pH11, which enables stable and robust transgene expression.
Abstract: Transgenic pigs play an important role in producing higher quality food in agriculture and improving human health when used as animal models for various human diseases in biomedicine. Production of transgenic pigs, however, is a lengthy and inefficient process that hinders research using pig models. Recent applications of the CRISPR/Cas9 system for generating site-specific gene knockout/knockin models, including a knockout pig model, have significantly accelerated the animal model field. However, a knockin pig model containing a site-specific transgene insertion that can be passed on to its offspring remains lacking. Here, we describe for the first time the generation of a site-specific knockin pig model using a combination of CRISPR/Cas9 and somatic cell nuclear transfer. We also report a new genomic "safe harbor" locus, named pH11, which enables stable and robust transgene expression. Our results indicate that our CRISPR/Cas9 knockin system allows highly efficient gene insertion at the pH11 locus of up to 54% using drug selection and 6% without drug selection. We successfully inserted a gene fragment larger than 9 kb at the pH11 locus using the CRISPR/Cas9 system. Our data also confirm that the gene inserted into the pH11 locus is highly expressed in cells, embryos and animals.

Journal ArticleDOI
01 Jul 2015-PLOS ONE
TL;DR: A transgenic “oncopig” line encoding Cre recombinase inducible porcine transgenes encoding KRASG12D and TP53R167H, which represent a commonly mutated oncogene and tumor suppressor in human cancers, respectively, could serve as a genetically malleable model for potentially a wide spectrum of cancers.
Abstract: The large size of the pig and its similarity in anatomy, physiology, metabolism, and genetics to humans make it an ideal platform to develop a genetically defined, large animal model of cancer. To this end, we created a transgenic “oncopig” line encoding Cre recombinase inducible porcine transgenes encoding KRASG12D and TP53R167H, which represent a commonly mutated oncogene and tumor suppressor in human cancers, respectively. Treatment of cells derived from these oncopigs with the adenovirus encoding Cre (AdCre) led to KRASG12D and TP53R167H expression, which rendered the cells transformed in culture and tumorigenic when engrafted into immunocompromised mice. Finally, injection of AdCre directly into these oncopigs led to the rapid and reproducible tumor development of mesenchymal origin. Transgenic animals receiving AdGFP (green fluorescent protein) did not have any tumor mass formation or altered histopathology. This oncopig line could thus serve as a genetically malleable model for potentially a wide spectrum of cancers, while controlling for temporal or spatial genesis, which should prove invaluable to studies previously hampered by the lack of a large animal model of cancer.

Journal ArticleDOI
TL;DR: Data indicate a critical role of Runx2 in SMC osteogenic phenotype change and mineral deposition in a mouse model of AMC, suggesting that Runx 2 and downstream osteogenic pathways in SMCs may be useful therapeutic targets for treating or preventing AMC in high-risk patients.
Abstract: Arterial medial calcification (AMC) is a hallmark of aging, diabetes, and chronic kidney disease. Smooth muscle cell (SMC) transition to an osteogenic phenotype is a common feature of AMC, and is preceded by expression of runt-related transcription factor 2 (Runx2), a master regulator of bone development. Whether SMC-specific Runx2 expression is required for osteogenic phenotype change and AMC remains unknown. We therefore created an improved targeting construct to generate mice with floxed Runx2 alleles (Runx2f/f) that do not produce truncated Runx2 proteins after Cre recombination, thereby preventing potential off-target effects. SMC-specific deletion using SM22–recombinase transgenic allele mice (Runx2ΔSM) led to viable mice with normal bone and arterial morphology. After vitamin D overload, arterial SMCs in Runx2f/f mice expressed Runx2, underwent osteogenic phenotype change, and developed severe AMC. In contrast, vitamin D–treated Runx2ΔSM mice had no Runx2 in blood vessels, maintained SMC phenotype, and did not develop AMC. Runx2 deletion did not affect serum calcium, phosphate, fibroblast growth factor-23, or alkaline phosphatase levels. In vitro, Runx2f/f SMCs calcified to a much greater extent than those derived from Runx2ΔSM mice. These data indicate a critical role of Runx2 in SMC osteogenic phenotype change and mineral deposition in a mouse model of AMC, suggesting that Runx2 and downstream osteogenic pathways in SMCs may be useful therapeutic targets for treating or preventing AMC in high-risk patients.

Journal ArticleDOI
TL;DR: It is found that STC2 potently inhibits the proteolytic activity of the growth-promoting metalloproteinase, pregnancy-associated plasma protein-A (PAPP-A), and is identified as a novel proteinase inhibitor and a previously unrecognized extracellular component of the IGF system.

Journal ArticleDOI
TL;DR: Comparisons showed that fully human antibodies from transgenic animals were not as efficiently produced as wild-type Ig, and significant improvements were obtained when the human V-region genes were linked to the endogenous CH-region, either on large constructs or by site-specific integration.
Abstract: Fully human antibodies from transgenic animals account for an increasing number of new therapeutics. After immunization, diverse human monoclonal antibodies of high affinity can be obtained from transgenic rodents, while large animals, such as transchromosomic cattle, have produced respectable amounts of specific human immunoglobulin (Ig) in serum. Several strategies to derive animals expressing human antibody repertoires have been successful. In rodents, gene loci on bacterial artificial chromosomes or yeast artificial chromosomes were integrated by oocyte microinjection or transfection of embryonic stem (ES) cells, while ruminants were derived from manipulated fibroblasts with integrated human chromosome fragments or human artificial chromosomes. In all strains, the endogenous Ig loci have been silenced by gene targeting, either in ES or fibroblast cells, or by zinc finger technology via DNA microinjection; this was essential for optimal production. However, comparisons showed that fully human antibodies were not as efficiently produced as wild-type Ig. This suboptimal performance, with respect to immune response and antibody yield, was attributed to imperfect interaction of the human constant region with endogenous signaling components such as the Igα/β in mouse, rat or cattle. Significant improvements were obtained when the human V-region genes were linked to the endogenous CH-region, either on large constructs or, separately, by site-specific integration, which could also silence the endogenous Ig locus by gene replacement or inversion. In animals with knocked-out endogenous Ig loci and integrated large IgH loci, containing many human Vs, all D and all J segments linked to endogenous C genes, highly diverse human antibody production similar to normal animals was obtained.

Book ChapterDOI
TL;DR: This chapter will provide an overview of the theory of electroporation for the delivery of DNA both in individual cells and in tissues and its application for in vivo gene delivery in a number of animal models.
Abstract: Electroporation has been used extensively to transfer DNA to bacteria, yeast, and mammalian cells in culture for the past 30 years. Over this time, numerous advances have been made, from using fields to facilitate cell fusion, delivery of chemotherapeutic drugs to cells and tissues, and most importantly, gene and drug delivery in living tissues from rodents to man. Electroporation uses electrical fields to transiently destabilize the membrane allowing the entry of normally impermeable macromolecules into the cytoplasm. Surprisingly, at the appropriate field strengths, the application of these fields to tissues results in little, if any, damage or trauma. Indeed, electroporation has even been used successfully in human trials for gene delivery for the treatment of tumors and for vaccine development. Electroporation can lead to between 100 and 1000-fold increases in gene delivery and expression and can also increase both the distribution of cells taking up and expressing the DNA as well as the absolute amount of gene product per cell (likely due to increased delivery of plasmids into each cell). Effective electroporation depends on electric field parameters, electrode design, the tissues and cells being targeted, and the plasmids that are being transferred themselves. Most importantly, there is no single combination of these variables that leads to greatest efficacy in every situation; optimization is required in every new setting. Electroporation-mediated in vivo gene delivery has proven highly effective in vaccine production, transgene expression, enzyme replacement, and control of a variety of cancers. Almost any tissue can be targeted with electroporation, including muscle, skin, heart, liver, lung, and vasculature. This chapter will provide an overview of the theory of electroporation for the delivery of DNA both in individual cells and in tissues and its application for in vivo gene delivery in a number of animal models.