scispace - formally typeset
Search or ask a question

Showing papers on "X chromosome published in 2020"


Journal ArticleDOI
TL;DR: It is shown that the X chromosome affects AD-related vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD, and suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD.
Abstract: A major sex difference in Alzheimer's disease (AD) is that men with the disease die earlier than do women. In aging and preclinical AD, men also show more cognitive deficits. Here, we show that the X chromosome affects AD-related vulnerability in mice expressing the human amyloid precursor protein (hAPP), a model of AD. XY-hAPP mice genetically modified to develop testicles or ovaries showed worse mortality and deficits than did XX-hAPP mice with either gonad, indicating a sex chromosome effect. To dissect whether the absence of a second X chromosome or the presence of a Y chromosome conferred a disadvantage on male mice, we varied sex chromosome dosage. With or without a Y chromosome, hAPP mice with one X chromosome showed worse mortality and deficits than did those with two X chromosomes. Thus, adding a second X chromosome conferred resilience to XY males and XO females. In addition, the Y chromosome, its sex-determining region Y gene (Sry), or testicular development modified mortality in hAPP mice with one X chromosome such that XY males with testicles survived longer than did XY or XO females with ovaries. Furthermore, a second X chromosome conferred resilience potentially through the candidate gene Kdm6a, which does not undergo X-linked inactivation. In humans, genetic variation in KDM6A was linked to higher brain expression and associated with less cognitive decline in aging and preclinical AD, suggesting its relevance to human brain health. Our study suggests a potential role for sex chromosomes in modulating disease vulnerability related to AD.

94 citations


Journal ArticleDOI
TL;DR: Examples of the different presentations in males and females of the X-inactivation gene have been presented.

86 citations


Journal ArticleDOI
TL;DR: Interventional approaches including estrogen-related compounds and androgen receptor antagonists may be considered in patients with COVID-19, and Toll-like receptors encoded on the X chromosomes can sense SARS-CoV-2 nucleic acids, leading to a stronger innate immunity response in women.
Abstract: More men than women have died from COVID-19. Genes encoded on X chromosomes, and sex hormones may explain the decreased fatality of COVID-19 in women. The angiotensin-converting enzyme 2 gene is located on X chromosomes. Men, with a single X chromosome, may lack the alternative mechanism for cellular protection after exposure to SARS-CoV-2. Some Toll-like receptors encoded on the X chromosomes can sense SARS-CoV-2 nucleic acids, leading to a stronger innate immunity response in women. Both estrogen and estrogen receptor-α contribute to T cell activation. Interventional approaches including estrogen-related compounds and androgen receptor antagonists may be considered in patients with COVID-19.

77 citations


Journal ArticleDOI
TL;DR: The assembly of the threespine stickleback Y chromosome is described, which is less than 26 million years old and at an intermediate stage of degeneration, showing that the evolutionary forces shaping sex chromosomes can cause relatively rapid changes in the overall genetic architecture of Y chromosomes.
Abstract: Heteromorphic sex chromosomes have evolved repeatedly across diverse species. Suppression of recombination between X and Y chromosomes leads to degeneration of the Y chromosome. The progression of degeneration is not well understood, as complete sequence assemblies of heteromorphic Y chromosomes have only been generated across a handful of taxa with highly degenerate sex chromosomes. Here, we describe the assembly of the threespine stickleback (Gasterosteus aculeatus) Y chromosome, which is less than 26 million years old and at an intermediate stage of degeneration. Our previous work identified that the non-recombining region between the X and the Y spans approximately 17.5 Mb on the X chromosome. We combine long-read sequencing with a Hi-C-based proximity guided assembly to generate a 15.87 Mb assembly of the Y chromosome. Our assembly is concordant with cytogenetic maps and Sanger sequences of over 90 Y chromosome BAC clones. We find three evolutionary strata on the Y chromosome, consistent with the three inversions identified by our previous cytogenetic analyses. The threespine stickleback Y shows convergence with more degenerate sex chromosomes in the retention of haploinsufficient genes and the accumulation of genes with testis-biased expression, many of which are recent duplicates. However, we find no evidence for large amplicons identified in other sex chromosome systems. We also report an excellent candidate for the master sex-determination gene: a translocated copy of Amh (Amhy). Together, our work shows that the evolutionary forces shaping sex chromosomes can cause relatively rapid changes in the overall genetic architecture of Y chromosomes.

74 citations


Journal ArticleDOI
TL;DR: A comparative analysis of TS vs. KS regarding differences at the genomic network level measured in primary samples by analyzing gene expression, DNA methylation, and chromatin conformation indicates the existence of common molecular mechanisms for gene regulation in TS and KS that transmit the gene dosage changes to the transcriptome.
Abstract: In both Turner syndrome (TS) and Klinefelter syndrome (KS) copy number aberrations of the X chromosome lead to various developmental symptoms. We report a comparative analysis of TS vs. KS regarding differences at the genomic network level measured in primary samples by analyzing gene expression, DNA methylation, and chromatin conformation. X-chromosome inactivation (XCI) silences transcription from one X chromosome in female mammals, on which most genes are inactive, and some genes escape from XCI. In TS, almost all differentially expressed escape genes are down-regulated but most differentially expressed inactive genes are up-regulated. In KS, differentially expressed escape genes are up-regulated while the majority of inactive genes appear unchanged. Interestingly, 94 differentially expressed genes (DEGs) overlapped between TS and female and KS and male comparisons; and these almost uniformly display expression changes into opposite directions. DEGs on the X chromosome and the autosomes are coexpressed in both syndromes, indicating that there are molecular ripple effects of the changes in X chromosome dosage. Six potential candidate genes (RPS4X, SEPT6, NKRF, CX0rf57, NAA10, and FLNA) for KS are identified on Xq, as well as candidate central genes on Xp for TS. Only promoters of inactive genes are differentially methylated in both syndromes while escape gene promoters remain unchanged. The intrachromosomal contact map of the X chromosome in TS exhibits the structure of an active X chromosome. The discovery of shared DEGs indicates the existence of common molecular mechanisms for gene regulation in TS and KS that transmit the gene dosage changes to the transcriptome.

55 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the sex-dependent dosage of Kdm5c contributes to male/female differences in adipocyte biology, and X-escape genes as a critical component of female physiology are highlighted.
Abstract: Males and females differ in body composition and fat distribution. Using a mouse model that segregates gonadal sex (ovaries and testes) from chromosomal sex (XX and XY), we showed that XX chromosome complement in combination with a high-fat diet led to enhanced weight gain in the presence of male or female gonads. We identified the genomic dosage of Kdm5c, an X chromosome gene that escapes X-chromosome inactivation, as a determinant of the X chromosome effect on adiposity. Modulating Kdm5c gene dosage in XX female mice to levels that are normally present in males reduced body weight, fat content, and food intake to a similar degree as altering the entire X chromosome dosage. In cultured preadipocytes, the levels of KDM5C histone demethylase influenced chromatin accessibility (ATAC-seq), gene expression (RNA-seq), and adipocyte differentiation. Both in vitro and in vivo, Kdm5c dosage influenced gene expression involved in extracellular matrix remodeling, which is critical for adipocyte differentiation and adipose tissue expansion. In humans, adipose tissue KDM5C mRNA levels and KDM5C genetic variants were associated with body mass. These studies demonstrate that the sex-dependent dosage of Kdm5c contributes to male/female differences in adipocyte biology, and highlight X-escape genes as a critical component of female physiology.

51 citations


Journal ArticleDOI
TL;DR: A set of unique de novo DNA methylation target sites for both DNMT3 enzymes during mammalian development that overlap with hypomethylated sites in human patients are reported.
Abstract: De novo establishment of DNA methylation is accomplished by DNMT3A and DNMT3B Here, we analyze de novo DNA methylation in mouse embryonic fibroblasts (2i-MEFs) derived from DNA-hypomethylated 2i/L ES cells with genetic ablation of Dnmt3a or Dnmt3b We identify 355 and 333 uniquely unmethylated genes in Dnmt3a and Dnmt3b knockout (KO) 2i-MEFs, respectively We find that Dnmt3a is exclusively required for de novo methylation at both TSS regions and gene bodies of Polycomb group (PcG) target developmental genes, while Dnmt3b has a dominant role on the X chromosome Consistent with this, tissue-specific DNA methylation at PcG target genes is substantially reduced in Dnmt3a KO embryos Finally, we find that human patients with DNMT3 mutations exhibit reduced DNA methylation at regions that are hypomethylated in Dnmt3 KO 2i-MEFs In conclusion, here we report a set of unique de novo DNA methylation target sites for both DNMT3 enzymes during mammalian development that overlap with hypomethylated sites in human patients

46 citations


Journal ArticleDOI
TL;DR: It is found that female human primordial germ cells (hPGCs) display reduced X-linked gene expression before entering meiosis, and future studies of human germline development must consider the sexually dimorphic X-chromosome dosage compensation mechanisms in the prenatal germline.
Abstract: X-chromosome dosage compensation in female placental mammals is achieved by X-chromosome inactivation (XCI). Human pre-implantation embryos are an exception, in which dosage compensation occurs by X-chromosome dampening (XCD). Here, we examined whether XCD extends to human prenatal germ cells given their similarities to naive pluripotent cells. We found that female human primordial germ cells (hPGCs) display reduced X-linked gene expression before entering meiosis. Moreover, in hPGCs, both X chromosomes are active and express the long non-coding RNAs X active coating transcript (XACT) and X inactive specific transcript (XIST)-the master regulator of XCI-which are silenced after entry into meiosis. We find that XACT is a hPGC marker, describe XCD associated with XIST expression in hPGCs and suggest that XCD evolved in humans to regulate X-linked genes in pre-implantation embryos and PGCs. Furthermore, we found a unique mechanism of X-chromosome regulation in human primordial oocytes. Therefore, future studies of human germline development must consider the sexually dimorphic X-chromosome dosage compensation mechanisms in the prenatal germline.

43 citations


Journal ArticleDOI
TL;DR: The impact of two mouse models is reviewed, the Four Core Genotypes and XY* models, which have been used to uncover sex chromosome contributions to sex differences in a wide variety of phenotypes, including brain and behavior, autoimmunity and immunity, cardiovascular disease, metabolism, and Alzheimer's Disease.

41 citations


Journal ArticleDOI
TL;DR: MRI studies of human brains demonstrate variation in brain structure associated with both differences in gonadal hormones, and in the number of X and Y chromosomes, as a challenge to future investigators to improve understanding of sexual differentiation throughout the body.

39 citations


Journal ArticleDOI
TL;DR: The current understanding of the mechanisms underlying silencing and escape on the X chromosome as well as additional differences between the X in males and females that may contribute to Klinefelter syndrome are discussed.
Abstract: One of the two X chromosomes in females is epigenetically inactivated, thereby compensating for the dosage difference in X-linked genes between XX females and XY males. Not all X-linked genes are completely inactivated, however, with 12% of genes escaping X chromosome inactivation and another 15% of genes varying in their X chromosome inactivation status across individuals, tissues or cells. Expression of these genes from the second and otherwise inactive X chromosome may underlie sex differences between males and females, and feature in many of the symptoms of XXY Klinefelter males, who have both an inactive X and a Y chromosome. We review the approaches used to identify genes that escape from X-chromosome inactivation and discuss the nature of their sex-biased expression. These genes are enriched on the short arm of the X chromosome, and, in addition to genes in the pseudoautosomal regions, include genes with and without Y-chromosomal counterparts. We highlight candidate escape genes for some of the features of Klinefelter syndrome and discuss our current understanding of the mechanisms underlying silencing and escape on the X chromosome as well as additional differences between the X in males and females that may contribute to Klinefelter syndrome.

Journal ArticleDOI
TL;DR: This study built the first chromosome-level assembly of a psyllid, an aphid relative with X0 sex determination and obligate sexuality, and compared it with recently resolved chromosome- level assemblies of aphid genomes, reflecting constraints imposed by unique chromosomal mechanisms associated with the unusual aphid life cycle.
Abstract: Different evolutionary forces shape gene content and sequence evolution on autosomes versus sex chromosomes. Location on a sex chromosome can favor male-beneficial or female-beneficial mutations depending on the sex determination system and selective pressure on different sexual morphs. An X0 sex determination can lead to autosomal enrichment of male-biased genes, as observed in some hemipteran insect species. Aphids share X0 sex determination; however, models predict the opposite pattern, due to their unusual life cycles, which alternate between all-female asexual generations and a single sexual generation. Predictions include enrichment of female-biased genes on autosomes and of male-biased genes on the X, in contrast to expectations for obligately sexual species. Robust tests of these models require chromosome-level genome assemblies for aphids and related hemipterans with X0 sex determination and obligate sexual reproduction. In this study, we built the first chromosome-level assembly of a psyllid, an aphid relative with X0 sex determination and obligate sexuality, and compared it with recently resolved chromosome-level assemblies of aphid genomes. Aphid and psyllid X chromosomes differ strikingly. In aphids, female-biased genes are strongly enriched on autosomes and male-biased genes are enriched on the X. In psyllids, male-biased genes are enriched on autosomes. Furthermore, functionally important gene categories of aphids are enriched on autosomes. Aphid X-linked genes and male-biased genes are under relaxed purifying selection, but gene content and order on the X is highly conserved, possibly reflecting constraints imposed by unique chromosomal mechanisms associated with the unusual aphid life cycle.

Journal ArticleDOI
TL;DR: In the present review, the contribution of the escape genes to the female bias of autoimmune diseases will be discussed.
Abstract: Generally, autoimmune diseases are more prevalent in females than males. Various predisposing factors, including female sex hormones, X chromosome genes, and the microbiome have been implicated in the female bias of autoimmune diseases. During embryogenesis, one of the X chromosomes in the females is transcriptionally inactivated, in a process called X chromosome inactivation (XCI). This equalizes the impact of two X chromosomes in the females. However, some genes escape from XCI, providing a basis for the dual expression dosage of the given gene in the females. In the present review, the contribution of the escape genes to the female bias of autoimmune diseases will be discussed.

Journal ArticleDOI
TL;DR: This review analyzes the literature and databases about X-linked miRNAs, trying to understand how miRNAAs could contribute to emerging gender-biased functions and pathological mechanisms, such as immunity and cancer.
Abstract: MicroRNAs (miRNA) are small-non coding RNAs endowed with great regulatory power, thus playing key roles not only in almost all physiological pathways, but also in the pathogenesis of several diseases. Surprisingly, genomic distribution analysis revealed the highest density of miRNA sequences on the X chromosome; this evolutionary conserved mammalian feature equips females with a larger miRNA machinery than males. However, miRNAs contribution to some X-related conditions, properties or functions is still poorly explored. With the aim to support and focus research in the field, this review analyzes the literature and databases about X-linked miRNAs, trying to understand how miRNAs could contribute to emerging gender-biased functions and pathological mechanisms, such as immunity and cancer. A fine map of miRNA sequences on the X chromosome is reported, and their known functions are discussed; in addition, bioinformatics functional analyses of the whole X-linked miRNA targetome (predicted and validated) were performed. The emerging scenario points to different gaps in the knowledge that should be filled with future experimental investigations, also in terms of possible implications and pathological perspectives for X chromosome aneuploidy syndromes, such as Turner and Klinefelter syndromes.

Journal ArticleDOI
TL;DR: It is shown that Firre RNA expressed from the active X chromosome maintains histone H3K27me3 enrichment on the inactive X chromosome (Xi) in somatic cells, and that the compact 3D structure of the Xi partly depends on the Firre locus and its RNA.
Abstract: Firre encodes a lncRNA involved in nuclear organization. Here, we show that Firre RNA expressed from the active X chromosome maintains histone H3K27me3 enrichment on the inactive X chromosome (Xi) in somatic cells. This trans-acting effect involves SUZ12, reflecting interactions between Firre RNA and components of the Polycomb repressive complexes. Without Firre RNA, H3K27me3 decreases on the Xi and the Xi-perinucleolar location is disrupted, possibly due to decreased CTCF binding on the Xi. We also observe widespread gene dysregulation, but not on the Xi. These effects are measurably rescued by ectopic expression of mouse or human Firre/FIRRE transgenes, supporting conserved trans-acting roles. We also find that the compact 3D structure of the Xi partly depends on the Firre locus and its RNA. In common lymphoid progenitors and T-cells Firre exerts a cis-acting effect on maintenance of H3K27me3 in a 26 Mb region around the locus, demonstrating cell type-specific trans- and cis-acting roles of this lncRNA. Firre encodes a lncRNA involved in nuclear organization in mammals. Here, the authors find that allelic deletion of Firre on the active X chromosome (Xa) results in dose-dependent loss of histone H3K27me3 on the inactive X chromosome (Xi), along with other trans-acting effects, including disruption of the perinuclear location and minor dysregulation of gene expression.

Journal ArticleDOI
TL;DR: Phylogenetic tree analyses reveal that occasional recombination has persisted between the sex chromosomes for much of their length, as X- and Y-linked sequences cluster by species instead of by gametologs, which maintains the extensive homomorphy observed in these systems.
Abstract: The loss of recombination triggers divergence between the sex chromosomes and promotes degeneration of the sex-limited chromosome. Several livebearers within the genus Poecilia share a male-heterogametic sex chromosome system that is roughly 20 million years old, with extreme variation in the degree of Y chromosome divergence. In P. picta, the Y is highly degenerate and associated with complete X chromosome dosage compensation. In contrast, although recombination is restricted across almost the entire length of the sex chromosomes in P. reticulata and P wingei, divergence between the X and the Y chromosome is very low. This clade therefore offers a unique opportunity to study the forces that accelerate or hinder sex chromosome divergence. We used RNA-seq data from multiple families of both P. reticulata and P. wingei, the species with low levels of sex chromosome divergence, to differentiate X and Y coding sequence based on sex-limited SNP inheritance. Phylogenetic tree analyses reveal that occasional recombination has persisted between the sex chromosomes for much of their length, as X- and Y-linked sequences cluster by species instead of by gametolog. This incomplete recombination suppression maintains the extensive homomorphy observed in these systems. In addition, we see differences between the previously identified strata in the phylogenetic clustering of X-Y orthologs, with those that cluster by chromosome located in the older stratum, the region previously associated with the sex-determining locus. However, recombination arrest appears to have expanded throughout the sex chromosomes more gradually instead of through a stepwise process associated with inversions.

Journal ArticleDOI
TL;DR: Recent findings regarding two members of the neuroligin (NLGN) family of postsynaptic adhesion molecules regarding function at the synapse in both rodent models and human-derived differentiated neurons are discussed, and the exciting challenges moving forward to a better understanding of ASD/ID are highlighted.
Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that results in social-communication impairments, as well as restricted and repetitive behaviors. Moreover, ASD is more prevalent in males, with a male to female ratio of 4 to 1. Although the underlying etiology of ASD is generally unknown, recent advances in genome sequencing have facilitated the identification of a host of associated genes. Among these, synaptic proteins such as cell adhesion molecules have been strongly linked with ASD. Interestingly, many large genome sequencing studies exclude sex chromosomes, which leads to a shift in focus toward autosomal genes as targets for ASD research. However, there are many genes on the X chromosome that encode synaptic proteins, including strong candidate genes. Here, we review findings regarding two members of the neuroligin (NLGN) family of postsynaptic adhesion molecules, NLGN3 and NLGN4. Neuroligins have multiple isoforms (NLGN1-4), which are both autosomal and sex-linked. The sex-linked genes, NLGN3 and NLGN4, are both on the X chromosome and were among the first few genes to be linked with ASD and intellectual disability (ID). In addition, there is a less studied human neuroligin on the Y chromosome, NLGN4Y, which forms an X-Y pair with NLGN4X. We will discuss recent findings of these neuroligin isoforms regarding function at the synapse in both rodent models and human-derived differentiated neurons, and highlight the exciting challenges moving forward to a better understanding of ASD/ID.

Journal ArticleDOI
TL;DR: This review will explore the mechanism of X chromosome inactivation, discuss the relationship between X chromosomes inactivation and tumorigenesis, and consider the consequent sex differences in cancer.
Abstract: During embryonic development, one of the two X chromosomes of a mammalian female cell is randomly inactivated by the X chromosome inactivation mechanism, which is mainly dependent on the regulation of the non-coding RNA X-inactive specific transcript at the X chromosome inactivation center. There are three proteins that are essential for X-inactive specific transcript to function properly: scaffold attachment factor-A, lamin B receptor, and SMRT- and HDAC-associated repressor protein. In addition, the absence of X-inactive specific transcript expression promotes tumor development. During the process of chromosome inactivation, some tumor suppressor genes escape inactivation of the X chromosome and thereby continue to play a role in tumor suppression. A well-functioning tumor suppressor gene on the idle X chromosome in women is one of the reasons they have a lower propensity to develop cancer than men, women thereby benefit from this enhanced tumor suppression. This review will explore the mechanism of X chromosome inactivation, discuss the relationship between X chromosome inactivation and tumorigenesis, and consider the consequent sex differences in cancer.

Journal ArticleDOI
TL;DR: The X chromosome is not enriched for ISRG, though particular X-linked genes may be responsible for sex differences in certain immune responses and particular epigenetic controllers were preferentially expressed in leukocytes.
Abstract: Sex bias in immune function has been contributed in part to a preponderance of immune system-related genes (ISRG) on the X-chromosome. We verified whether ISRG are more abundant on the X chromosome as compared to autosomal chromosomes and reflected on the impact of our findings. Consulting freely accessible databases, we performed a comparative study consisting of three complementary strategies. First, among coding X/Y-linked genes, the abundance of ISRG was compared to the abundance of genes dedicated to other systems. Genes were assigned considering three criteria: disease, tissue expression, and function (DEF approach). In addition, we carried out two genome-wide approaches to compare the contribution of sex and autosomal chromosomes to immune genes defined by an elevated expression in lymphatic tissues (LTEEG approach) or annotation to an immune system process, GO:0002376 (GO approach). The X chromosome had less immune genes than the median of the autosomal chromosomes. Among X-linked genes, ISRG ranked fourth after the reproductive and nervous systems and genes dedicated to development, proliferation and apoptosis. On the Y chromosome, ISRG ranked second, and at the pseudoautosomal region (PAR) first. According to studies on the expression of X-linked genes in a variety of (mostly non-lymphatic) tissues, almost two-thirds of ISRG are expressed without sex bias, and the remaining ISRG presented female and male bias with similar frequency. Various epigenetic controllers, X-linked MSL3 and Y-linked KDM5D and UTY, were preferentially expressed in leukocytes and deserve further attention for a possible role in sex biased expression or its neutralisation. The X chromosome is not enriched for ISRG, though particular X-linked genes may be responsible for sex differences in certain immune responses. So far, there is insufficient information on sex-biased expression of X/Y-linked ISRG in leukocytes to draw general conclusions on the impact of X/Y-linked ISRG in immune function. More research on the regulation of the expression X-linked genes is required with attention to 1) female and male mechanisms that may either augment or diminish sex biased expression and 2) tissue-specific expression studies.

Journal ArticleDOI
TL;DR: The main aim of this article is to provide a comprehensive review of the advances and applications of X-chromosomal markers in population and forensic genetics over the last two decades.
Abstract: The unique structure of the X chromosome shaped by evolution has led to the present gender-specific genetic differences, which are not shared by its counterpart, the Y chromosome, and neither by the autosomes. In males, recombination between the X and Y chromosomes is limited to the pseudoautosomal regions, PAR1 and PAR2; therefore, in males, the X chromosome is (almost) entirely transmitted to female offspring. On the other hand, the X chromosome is present in females with two copies that recombine along the whole chromosome during female meiosis and that is transmitted to both female and male descendants. These transmission characteristics, besides the obvious clinical impact (sex chromosome aneuploidies are extremely frequent), make the X chromosome an irreplaceable genetic tool for population genetic-based studies as well as for kinship and forensic investigations. In the early 2000s, the number of publications using X-chromosomal polymorphisms in forensic and population genetic applications increased steadily. However, nearly 20 years later, we observe a conspicuous decrease in the rate of these publications. In light of this observation, the main aim of this article is to provide a comprehensive review of the advances and applications of X-chromosomal markers in population and forensic genetics over the last two decades. The foremost relevant topics are addressed as: (i) developments concerning the number and types of markers available, with special emphasis on short tandem repeat (STR) polymorphisms (STR nomenclatures and practical concerns); (ii) overview of worldwide population (frequency) data; (iii) the use of X-chromosomal markers in (complex) kinship testing and the forensic statistical evaluation of evidence; (iv) segregation and mutation studies; and (v) current weaknesses and future prospects.

Journal ArticleDOI
TL;DR: Using super-resolution sequencing, the Y Chromosome of Bos taurus (bull) is explored and is found to be dominated by massive, lineage-specific amplification of testis-expressed gene families, making it the most gene-dense Y chromosome sequenced to date.
Abstract: Studies of Y Chromosome evolution have focused primarily on gene decay, a consequence of suppression of crossing-over with the X Chromosome. Here, we provide evidence that suppression of X-Y crossing-over unleashed a second dynamic: selfish X-Y arms races that reshaped the sex chromosomes in mammals as different as cattle, mice, and men. Using super-resolution sequencing, we explore the Y Chromosome of Bos taurus (bull) and find it to be dominated by massive, lineage-specific amplification of testis-expressed gene families, making it the most gene-dense Y Chromosome sequenced to date. As in mice, an X-linked homolog of a bull Y-amplified gene has become testis-specific and amplified. This evolutionary convergence implies that lineage-specific X-Y coevolution through gene amplification, and the selfish forces underlying this phenomenon, were dominatingly powerful among diverse mammalian lineages. Together with Y gene decay, X-Y arms races molded mammalian sex chromosomes and influenced the course of mammalian evolution.

Journal ArticleDOI
22 Jun 2020
TL;DR: A mutation significance study of over 1,000 melanoma exomes combined with a multi-omic analysis provides insights into melanoma etiology and supports contribution of specific mutations to the sex bias observed in this cancer.
Abstract: The high background tumor mutation burden in cutaneous melanoma limits the ability to identify significantly mutated genes (SMGs) that drive this cancer To address this, we performed a mutation significance study of over 1,000 melanoma exomes, combined with a multi-omic analysis of 470 cases from The Cancer Genome Atlas We discovered several SMGs with co-occurring loss-of-heterozygosity and loss-of-function mutations, including PBRM1, PLXNC1 and PRKAR1A, which encodes a protein kinase A holoenzyme subunit Deconvolution of bulk tumor transcriptomes into cancer, immune and stromal components revealed a melanoma-intrinsic oxidative phosphorylation signature associated with protein kinase A pathway alterations We also identified SMGs on the X chromosome, including the RNA helicase DDX3X, whose loss-of-function mutations were exclusively observed in males Finally, we found that tumor mutation burden and immune infiltration contain complementary information on survival of patients with melanoma In summary, our multi-omic analysis provides insights into melanoma etiology and supports contribution of specific mutations to the sex bias observed in this cancer Alkallas et al uncover new significantly mutated genes in a large cohort of cutaneous melanoma, including the RNA helicase DDX3X, through integrated analysis of genomic, transcriptomic and DNA methylation data

Journal ArticleDOI
TL;DR: It is shown that regardless of the choice of the read aligner, using an alignment protocol informed by the sex chromosome complement of the sample results in higher expression estimates on the pseudoautosomal regions of the X chromosome in both genetic male and genetic female samples, as well as an increased number of unique genes being called as differentially expressed between the sexes.
Abstract: Human X and Y chromosomes share an evolutionary origin and, as a consequence, sequence similarity. We investigated whether the sequence homology between the X and Y chromosomes affects the alignment of RNA-Seq reads and estimates of differential expression. We tested the effects of using reference genomes and reference transcriptomes informed by the sex chromosome complement of the sample’s genome on the measurements of RNA-Seq abundance and sex differences in expression. The default genome includes the entire human reference genome (GRCh38), including the entire sequence of the X and Y chromosomes. We created two sex chromosome complement informed reference genomes. One sex chromosome complement informed reference genome was used for samples that lacked a Y chromosome; for this reference genome version, we hard-masked the entire Y chromosome. For the other sex chromosome complement informed reference genome, to be used for samples with a Y chromosome, we hard-masked only the pseudoautosomal regions of the Y chromosome, because these regions are duplicated identically in the reference genome on the X chromosome. We analyzed the transcript abundance in the whole blood, brain cortex, breast, liver, and thyroid tissues from 20 genetic female (46, XX) and 20 genetic male (46, XY) samples. Each sample was aligned twice: once to the default reference genome and then independently aligned to a reference genome informed by the sex chromosome complement of the sample, repeated using two different read aligners, HISAT and STAR. We then quantified sex differences in gene expression using featureCounts to get the raw count estimates followed by Limma/Voom for normalization and differential expression. We additionally created sex chromosome complement informed transcriptome references for use in pseudo-alignment using Salmon. Transcript abundance was quantified twice for each sample: once to the default target transcripts and then independently to target transcripts informed by the sex chromosome complement of the sample. We show that regardless of the choice of the read aligner, using an alignment protocol informed by the sex chromosome complement of the sample results in higher expression estimates on the pseudoautosomal regions of the X chromosome in both genetic male and genetic female samples, as well as an increased number of unique genes being called as differentially expressed between the sexes. We additionally show that using a pseudo-alignment approach informed on the sex chromosome complement of the sample eliminates Y-linked expression in female XX samples.

Journal ArticleDOI
TL;DR: It is shown that incomplete blocking of autocrine fibroblast growth factor 2 (FGF2) signaling in naive hESCs drives significant heterogeneity in X chromosome and pluripotency status and establishes a powerful platform to study human XCI.

Journal ArticleDOI
TL;DR: The results suggest an impact of the supernumerary X chromosome in 47,XXX syndrome on the methylation status of selected genes despite an overall comparable expression profile.
Abstract: 47,XXX (triple X) and Turner syndrome (45,X) are sex chromosomal abnormalities with detrimental effects on health with increased mortality and morbidity. In karyotypical normal females, X-chromosome inactivation balances gene expression between sexes and upregulation of the X chromosome in both sexes maintain stoichiometry with the autosomes. In 47,XXX and Turner syndrome a gene dosage imbalance may ensue from increased or decreased expression from the genes that escape X inactivation, as well as from incomplete X chromosome inactivation in 47,XXX. We aim to study genome-wide DNA-methylation and RNA-expression changes can explain phenotypic traits in 47,XXX syndrome. We compare DNA-methylation and RNA-expression data derived from white blood cells of seven women with 47,XXX syndrome, with data from seven female controls, as well as with seven women with Turner syndrome (45,X). To address these questions, we explored genome-wide DNA-methylation and transcriptome data in blood from seven females with 47,XXX syndrome, seven females with Turner syndrome, and seven karyotypically normal females (46,XX). Based on promoter methylation, we describe a demethylation of six X-chromosomal genes (AMOT, HTR2C, IL1RAPL2, STAG2, TCEANC, ZNF673), increased methylation for GEMIN8, and four differentially methylated autosomal regions related to four genes (SPEG, MUC4, SP6, and ZNF492). We illustrate how these changes seem compensated at the transcriptome level although several genes show differential exon usage. In conclusion, our results suggest an impact of the supernumerary X chromosome in 47,XXX syndrome on the methylation status of selected genes despite an overall comparable expression profile.

Posted ContentDOI
21 Sep 2020-bioRxiv
TL;DR: The model for nematode chromosome evolution provides a platform for investigation of the tensions between local genome rearrangement and karyotypic evolution in generating extant genome architectures.
Abstract: Eukaryotic chromosomes have phylogenetic persistence. In many taxa, the number of chromosomes is related to the number of centromeres. However, in some groups, such as rhabditid nematodes, centromeric function is distributed across multiple sites on each chromosome. These holocentric chromosomes might, a priori, be expected to be permissive of large-scale chromosomal rearrangement, as chromosomal fragments could still partition correctly and fusions would not generate lethal conflict between multiple centromeres. Here, we explore the phylogenetic stability of nematode chromosomes using a new telomere-to-telomere assembly of the rhabditine nematode Oscheius tipulae generated from nanopore long reads. The 60 Mb O. tipulae genome is resolved into six chromosomal molecules. We find evidence of specific chromatin diminution at all telomeres. Comparing this chromosomal O. tipulae assembly with chromosomal assemblies of diverse rhabditid nematodes we identify seven ancestral chromosomal elements (Nigon elements), and present a model for the evolution of nematode chromosomes through rearrangement and fusion of these elements. We identify frequent fusion events involving NigonX, the element associated with the rhabditid X chromosome, and thus sex-chromosome associated gene sets differ markedly between species. Despite the karyotypic stability, gene order within chromosomes defined by Nigon elements is not conserved. Our model for nematode chromosome evolution provides a platform for investigation of the tensions between local genome rearrangement and karyotypic evolution in generating extant genome architectures.

Journal ArticleDOI
TL;DR: Genetic evidence is provided that up-regulation of XIST accompanied with more skewed allelic expression on X-chromosome is associated with the pathogenesis of SLE and may provide mechanistic insights into the increased incidence of Sle in females.
Abstract: A common feature of autoimmune diseases, including systemic lupus erythematosus (SLE), is an increased prevalence in women. However, the molecular basis for sex disparity in SLE remains poorly understood. To examine the role of X-linked transcription in SLE adaptive immune cells, we performed RNA-seq in T cell and B cell subsets from either healthy donors or patients with SLE. Analyses of allelic expression (AE) profiles identified a pattern of increased allelic imbalance across the entire X chromosome in SLE lymphocytes. X-linked genes exhibiting AE in SLE had an extensive overlap with genes known to escape X chromosome inactivation (XCI). XIST RNA was overexpressed in SLE patients. Differential XIST expression correlated with AE profiles more positively at X-linked genes than the genome-wide background. Analysis of three independent RNA-seq data verified the XIST-associated skewed AE on X chromosome in SLE. Integrative analyses of DNA methylation profiles showed an increased variability of DNA methylation levels at these AE-related X-linked genes. In cultured lymphoblastic cells, knockdown of XIST specifically altered allelic imbalance patterns between X chromosomes. Our study provides genetic evidence that upregulation of XIST accompanied with more skewed allelic expression on X chromosome is associated with the pathogenesis of SLE and may provide mechanistic insights into the increased incidence of SLE in females.

Journal ArticleDOI
TL;DR: The role of X chromosome epigenetics and, based upon GWAS studies, the PCDHX11 gene is examined and other genetic risk factors of AD that involve X-chromosome epigenetics are explored.
Abstract: Alzheimer's disease (AD) is a neurodegenerative disease that affects millions of individuals worldwide and can occur relatively early or later in life. It is well known that genetic components, such as the amyloid precursor protein gene on chromosome 21, are fundamental in early-onset AD (EOAD). To date, however, only the apolipoprotein E4 (ApoE4) gene has been proved to be a genetic risk factor for late-onset AD (LOAD). In recent years, despite the hypothesis that many additional unidentified genes are likely to play a role in AD development, it is surprising that additional gene polymorphisms associated with LOAD have failed to come to light. In this review, we examine the role of X chromosome epigenetics and, based upon GWAS studies, the PCDHX11 gene. Furthermore, we explore other genetic risk factors of AD that involve X-chromosome epigenetics.

Journal ArticleDOI
TL;DR: A novel paradigm for the evolution of sex determination and sex chromosomes is presented, in which there is an evolutionary transition in the master sex determiner, but the X chromosome remains unchanged.
Abstract: Sex chromosomes can differ between species as a result of evolutionary turnover, a process that can be driven by evolution of the sex determination pathway. Canonical models of sex chromosome turnover hypothesize that a new master sex determining gene causes an autosome to become a sex chromosome or an XY chromosome pair to switch to a ZW pair (or vice versa). Here, a novel paradigm for the evolution of sex determination and sex chromosomes is presented, in which there is an evolutionary transition in the master sex determiner, but the X chromosome remains unchanged. There are three documented examples of the novel paradigm, and it is hypothesized that a similar process could happen in a ZW sex chromosome system. Three other taxa are also identified where the novel paradigm may have occurred, and how it could be distinguished from canonical trajectories in these and additional taxa is also described.

Posted ContentDOI
25 Mar 2020-bioRxiv
TL;DR: This study designed and used a sequence capture array to identify a novel sex-linked region (SLR) in Salix nigra, a basal species in the willow clade, and demonstrated that this species has XY heterogamety, and speculate that either a recent bottleneck in population size or factors related to positive or background selection generated this differential pattern of Tajima’s D on the X and autosomes.
Abstract: The development of non-recombining sex chromosomes has radical effects on the evolution of discrete sexes and sexual dimorphism. Although dioecy is rare in plants, sex chromosomes have evolved repeatedly throughout the diversification of angiosperms, and many of these sex chromosomes are relatively young compared to those found in vertebrates. The Salicaceae, the family of plants that includes poplars and willows, contains predominantly dioecious species and dioecy likely evolved prior to the split of willows and poplars over 70 million years ago. Yet, despite this shared origin of dioecy both the chromosomal location of the sex determination region and the pattern of sex chromosome heterogamety differ between and within these genera. In this study we identified a novel sex-linked region (SLR) in Salix nigra, a basal species in the willow clade, and demonstrated that this species has XY heterogamety. We did not detect any genetic overlap with the previously characterized ZW SLRs in willows, which map to a different chromosome. The S. nigra SLR is characterized by strong recombination suppression across a 2MB region. The non-recombining portion of the X chromosome also exhibits a pattern of low Tajima9s D, consistent with a recent selective sweep of the X chromosome in this region.