scispace - formally typeset
Search or ask a question

Showing papers by "Andre K. Geim published in 2019"


Journal ArticleDOI
28 Feb 2019-Science
TL;DR: In this paper, the authors found that the viscous electron fluid in graphene responds to nonquantizing magnetic fields by producing an electric field opposite to that generated by the ordinary Hall effect.
Abstract: An electrical conductor subjected to a magnetic field exhibits the Hall effect in the presence of current flow. Here, we report a qualitative deviation from the standard behavior in electron systems with high viscosity. We found that the viscous electron fluid in graphene responds to nonquantizing magnetic fields by producing an electric field opposite to that generated by the ordinary Hall effect. The viscous contribution is substantial and identified by studying local voltages that arise in the vicinity of current-injecting contacts. We analyzed the anomaly over a wide range of temperatures and carrier densities and extracted the Hall viscosity, a dissipationless transport coefficient that was long identified theoretically but remained elusive in experiments.

243 citations


Journal ArticleDOI
TL;DR: In this paper, the authors provided the first real-space imaging of Poiseuille flow of an electronic fluid, as well as visualization of its evolution from ballistic flow using a scanning nanotube single electron transistor.
Abstract: Hydrodynamics is a general description for the flow of a fluid, and is expected to hold even for fundamental particles such as electrons when inter-particle interactions dominate. While various aspects of electron hydrodynamics were revealed in recent experiments, the fundamental spatial structure of hydrodynamic electrons, the Poiseuille flow profile, has remained elusive. In this work, we provide the first real-space imaging of Poiseuille flow of an electronic fluid, as well as visualization of its evolution from ballistic flow. Utilizing a scanning nanotube single electron transistor, we image the Hall voltage of electronic flow through channels of high-mobility graphene. We find that the profile of the Hall field across the channel is a key physical quantity for distinguishing ballistic from hydrodynamic flow. We image the transition from flat, ballistic field profiles at low temperature into parabolic field profiles at elevated temperatures, which is the hallmark of Poiseuille flow. The curvature of the imaged profiles is qualitatively reproduced by Boltzmann calculations, which allow us to create a 'phase diagram' that characterizes the electron flow regimes. Our results provide long-sought, direct confirmation of Poiseuille flow in the solid state, and enable a new approach for exploring the rich physics of interacting electrons in real space.

165 citations


Journal ArticleDOI
07 Mar 2019-Nature
TL;DR: Measurements of ionic fluid transport through molecular-sized slit-like channels reveal a transistor-like electrohydrodynamic effect and this highly nonlinear gating of fluid transport under molecular-scale confinement may offer new routes to control molecular and ion transport.
Abstract: Over the past decade, the ability to reduce the dimensions of fluidic devices to the nanometre scale (by using nanotubes1-5 or nanopores6-11, for example) has led to the discovery of unexpected water- and ion-transport phenomena12-14. More recently, van der Waals assembly of two-dimensional materials15 has allowed the creation of artificial channels with angstrom-scale precision16. Such channels push fluid confinement to the molecular scale, wherein the limits of continuum transport equations17 are challenged. Water films on this scale can rearrange into one or two layers with strongly suppressed dielectric permittivity18,19 or form a room-temperature ice phase20. Ionic motion in such confined channels21 is affected by direct interactions between the channel walls and the hydration shells of the ions, and water transport becomes strongly dependent on the channel wall material22. We explore how water and ionic transport are coupled in such confinement. Here we report measurements of ionic fluid transport through molecular-sized slit-like channels. The transport, driven by pressure and by an applied electric field, reveals a transistor-like electrohydrodynamic effect. An applied bias of a fraction of a volt increases the measured pressure-driven ionic transport (characterized by streaming mobilities) by up to 20 times. This gating effect is observed in both graphite and hexagonal boron nitride channels but exhibits marked material-dependent differences. We use a modified continuum framework accounting for the material-dependent frictional interaction of water molecules, ions and the confining surfaces to explain the differences observed between channels made of graphene and hexagonal boron nitride. This highly nonlinear gating of fluid transport under molecular-scale confinement may offer new routes to control molecular and ion transport, and to explore electromechanical couplings that may have a role in recently discovered mechanosensitive ionic channels23.

162 citations


Journal ArticleDOI
11 Jan 2019-Science
TL;DR: In this paper, one atomic plane is extracted from bulk crystals, leaving a two-dimensional slit of a few angstroms in height, and water moves through these capillaries with little resistance, whereas no permeation could be detected even for such small ions as Na+ and Cl-Only protons (H+) can diffuse through monolayer water inside the capllaries.
Abstract: It has long been an aspirational goal to create artificial structures that allow fast permeation of water but reject even the smallest hydrated ions, replicating the feat achieved by nature in protein channels (e.g., aquaporins). Despite recent progress in creating nanoscale pores and capillaries, these structures still remain distinctly larger than protein channels. We report capillaries made by effectively extracting one atomic plane from bulk crystals, which leaves a two-dimensional slit of a few angstroms in height. Water moves through these capillaries with little resistance, whereas no permeation could be detected even for such small ions as Na+ and Cl- Only protons (H+) can diffuse through monolayer water inside the capillaries. These observations improve our understanding of molecular transport at the atomic scale.

120 citations


Journal Article
TL;DR: In this article, the authors studied tunnelling through thin ferromagnetic chromium tribromide (CrBr3) barriers that are sandwiched between graphene electrodes, which suggests that these magnetic tunnel barriers could be used for spin injection.
Abstract: Van der Waals heterostructures, which are composed of layered two-dimensional materials, offer a platform to investigate a diverse range of physical phenomena and could be of use in a variety of applications. Heterostructures containing two-dimensional ferromagnets, such as chromium triiodide (CrI3), have recently been reported, which could allow two-dimensional spintronic devices to be developed. Here we study tunnelling through thin ferromagnetic chromium tribromide (CrBr3) barriers that are sandwiched between graphene electrodes. In devices with non-magnetic barriers, conservation of momentum can be relaxed by phonon-assisted tunnelling or by tunnelling through localized states. In contrast, in the devices with ferromagnetic barriers, the major tunnelling mechanisms are the emission of magnons at low temperatures and the scattering of electrons on localized magnetic excitations at temperatures above the Curie temperature. Magnetoresistance in the graphene electrodes further suggests induced spin–orbit coupling and proximity exchange via the ferromagnetic barrier. Tunnelling with magnon emission offers the possibility of spin injection.Electrons can tunnel through thin ferromagnetic CrBr3 barriers, sandwiched between graphene electrodes, via the emission of magnons, which suggests that these magnetic tunnel barriers could be used for spin injection.

111 citations


Journal ArticleDOI
05 Dec 2019-Nature
TL;DR: Direct imaging of the Poiseuille flow of an electronic fluid, as well as a visualization of its evolution from ballistic flow, are provided to enable exploration of the rich physics of interacting electrons in real space.
Abstract: Hydrodynamics, which generally describes the flow of a fluid, is expected to hold even for fundamental particles such as electrons when inter-particle interactions dominate1. Although various aspects of electron hydrodynamics have been revealed in recent experiments2–11, the fundamental spatial structure of hydrodynamic electrons—the Poiseuille flow profile—has remained elusive. Here we provide direct imaging of the Poiseuille flow of an electronic fluid, as well as a visualization of its evolution from ballistic flow. Using a scanning carbon nanotube single-electron transistor12, we image the Hall voltage of electronic flow through channels of high-mobility graphene. We find that the profile of the Hall field across the channel is a key physical quantity for distinguishing ballistic from hydrodynamic flow. We image the transition from flat, ballistic field profiles at low temperatures into parabolic field profiles at elevated temperatures, which is the hallmark of Poiseuille flow. The curvature of the imaged profiles is qualitatively reproduced by Boltzmann calculations, which allow us to create a ‘phase diagram’ that characterizes the electron flow regimes. Our results provide direct confirmation of Poiseuille flow in the solid state, and enable exploration of the rich physics of interacting electrons in real space. The emergence of a liquid-like electronic flow from ballistic flow in graphene is imaged, and an almost-ideal viscous hydrodynamic fluid of electrons exhibiting a parabolic Poiseuille flow profile is observed.

100 citations


Journal ArticleDOI
01 Oct 2019
TL;DR: In this paper, the magnetization of two-dimensional ferromagnetic crystals is measured using a multi-terminal Hall bar made from encapsulated graphene. But the magnetic response of CrBr3 varies little with the number of layers and its temperature dependence cannot be described by the simple Ising model of 2D magnetism.
Abstract: The study of atomically thin ferromagnetic crystals has led to the discovery of unusual magnetic behaviour and provided insight into the magnetic properties of bulk materials. However, the experimental techniques that have been used to explore ferromagnetism in such materials cannot probe the magnetic field directly. Here, we show that ballistic Hall micromagnetometry can be used to measure the magnetization of individual two-dimensional ferromagnets. Our devices are made by van der Waals assembly in such a way that the investigated ferromagnetic crystal is placed on top of a multi-terminal Hall bar made from encapsulated graphene. We use the micromagnetometry technique to study atomically thin chromium tribromide (CrBr3). We find that the material remains ferromagnetic down to monolayer thickness and exhibits strong out-of-plane anisotropy. We also find that the magnetic response of CrBr3 varies little with the number of layers and its temperature dependence cannot be described by the simple Ising model of two-dimensional ferromagnetism. Graphene-based Hall magnetometers can be used to study the magnetization of two-dimensional ferromagnets.

95 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe room-temperature photoluminescence (PL) emitters that naturally occur whenever monolayer transition metal dichalcogenides (TMDCs) is deposited on an atomically flat substrate.
Abstract: The possibility to tailor photoluminescence (PL) of monolayer transition metal dichalcogenides (TMDCs) using external factors such as strain, doping, and external environment is of significant interest for optoelectronic applications. Strain in particular can be exploited as a means to continuously vary the band gap. Micrometer-scale strain gradients were proposed for creating “artificial atoms” that can utilize the so-called exciton funneling effect and work, for example, as exciton condensers. Here we describe room-temperature PL emitters that naturally occur whenever monolayer TMDC is deposited on an atomically flat substrate. These are hydrocarbon-filled bubbles, which provide predictable, localized PL from well-separated sub-micrometer areas. Their emission energy is determined by the built-in strain controlled only by the substrate material, such that both the maximum strain and the strain profile are universal for all bubbles on a given substrate, i.e., independent of the bubble size. We show that ...

95 citations


Journal ArticleDOI
TL;DR: In this article, the authors explore pressure-driven streaming in such molecular-size slits and report a new electro-hydrodynamic effect under coupled pressure and electric force, which takes the form of a transistor-like response of the pressure induced ionic streaming: an applied bias of a fraction of a volt results in an enhancement of the streaming mobility by up to 20 times.
Abstract: The field of nanofluidics has shown considerable progress over the past decade thanks to key instrumental advances, leading to the discovery of a number of exotic transport phenomena for fluids and ions under extreme confinement. Recently, van der Waals assembly of 2D materials allowed fabrication of artificial channels with angstr\"om-scale precision. This ultimate confinement to the true molecular scale revealed unforeseen behaviour for both mass and ionic transport. In this work, we explore pressure-driven streaming in such molecular-size slits and report a new electro-hydrodynamic effect under coupled pressure and electric force. It takes the form of a transistor-like response of the pressure induced ionic streaming: an applied bias of a fraction of a volt results in an enhancement of the streaming mobility by up to 20 times. The gating effect is observed with both graphite and boron nitride channels but exhibits marked material-dependent features. Our observations are rationalized by a theoretical framework for the flow dynamics, including the frictional interaction of water, ions and the confining surfaces as a key ingredient. The material dependence of the voltage modulation can be traced back to a contrasting molecular friction on graphene and boron nitride. The highly nonlinear transport under molecular-scale confinement offers new routes to actively control molecular and ion transport and design elementary building blocks for artificial ionic machinery, such as ion pumps. Furthermore, it provides a versatile platform to explore electro-mechanical couplings potentially at play in recently discovered mechanosensitive ionic channels.

85 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe room-temperature photoluminescence (PL) emitters that naturally occur whenever monolayer transition metal dichalcogenides (TMDCs) is deposited on an atomically flat substrate.
Abstract: The possibility to tailor photoluminescence (PL) of monolayer transition metal dichalcogenides (TMDCs) using external factors such as strain, doping and external environment is of significant interest for optoelectronic applications. Strain in particular can be exploited as a means to continuously vary the bandgap. Micrometer-scale strain gradients were proposed for creating 'artificial atoms' that can utilize the so-called exciton funneling effect and work, for example, as exciton condensers. Here we describe room-temperature PL emitters that naturally occur whenever monolayer TMDC is deposited on an atomically flat substrate. These are hydrocarbon-filled bubbles which provide predictable, localized PL from well-separated submicron areas. Their emission energy is determined by the built-in strain controlled only by the substrate material, such that both the maximum strain and the strain profile are universal for all bubbles on a given substrate, i.e., independent of the bubble size. We show that for bubbles formed by monolayer MoS2, PL can be tuned between 1.72 to 1.81 eV by choosing bulk PtSe2, WS2, MoS2 or graphite as a substrate and its intensity is strongly enhanced by the funneling effect. Strong substrate-dependent quenching of the PL in areas of good contact between MoS2 and the substrate ensures localization of the luminescence to bubbles only; by employing optical reflectivity measurements we identify the mechanisms responsible for the quenching. Given the variety of available monolayer TMDCs and atomically flat substrates and the ease of creating such bubbles, our findings open a venue for making and studying the discussed light-emitting 'artificial atoms' that could be used in applications.

80 citations


Journal ArticleDOI
TL;DR: It is shown that the combined action of short-range nonmagnetic impurities located near the edges and on site electron-electron interactions effectively creates noncollinear magnetic scatterers, and, hence, results in strong backscattering.
Abstract: Despite topological protection and the absence of magnetic impurities, two-dimensional topological insulators display quantized conductance only in surprisingly short channels, which can be as short as 100 nm for atomically thin materials. We show that the combined action of short-range nonmagnetic impurities located near the edges and on site electron-electron interactions effectively creates noncollinear magnetic scatterers, and, hence, results in strong backscattering. The mechanism causes deviations from quantization even at zero temperature and for a modest strength of electron-electron interactions. Our theory provides a straightforward conceptual framework to explain experimental results, especially those in atomically thin crystals, plagued with short-range edge disorder.

Journal ArticleDOI
TL;DR: In this paper, the authors present a route to spectrum reconstruction at all energies by using graphene which is aligned to two hexagonal boron nitride layers, one can make electrons scatter in the differential moire pattern which results in spectral changes at arbitrarily low energies.
Abstract: When two-dimensional (2D) atomic crystals are brought into close proximity to form a van der Waals heterostructure, neighbouring crystals may influence each other's properties. Of particular interest is when the two crystals closely match and a moire pattern forms, resulting in modified electronic and excitonic spectra, crystal reconstruction, and more. Thus, moire patterns are a viable tool for controlling the properties of 2D materials. However, the difference in periodicity of the two crystals limits the reconstruction and, thus, is a barrier to the low-energy regime. Here, we present a route to spectrum reconstruction at all energies. By using graphene which is aligned to two hexagonal boron nitride layers, one can make electrons scatter in the differential moire pattern which results in spectral changes at arbitrarily low energies. Further, we demonstrate that the strength of this potential relies crucially on the atomic reconstruction of graphene within the differential moire super cell.

Journal ArticleDOI
TL;DR: In this article, the authors study electron transport through a helical network and report giant Aharonov-Bohm oscillations that reach in amplitude up to 50% of resistivity and persist to temperatures above 100
Abstract: At very small twist angles of ∼0.1°, bilayer graphene exhibits a strain-accompanied lattice reconstruction that results in submicron-size triangular domains with the standard, Bernal stacking. If the interlayer bias is applied to open an energy gap inside the domain regions making them insulating, such marginally twisted bilayer graphene is expected to remain conductive due to a triangular network of chiral one-dimensional states hosted by domain boundaries. Here we study electron transport through this helical network and report giant Aharonov-Bohm oscillations that reach in amplitude up to 50% of resistivity and persist to temperatures above 100 K. At liquid helium temperatures, the network exhibits another kind of oscillations that appear as a function of carrier density and are accompanied by a sign-changing Hall effect. The latter are attributed to consecutive population of the narrow minibands formed by the network of one-dimensional states inside the gap. The conductivity of marginally-twisted bilayer graphene is predicted to persist in presence of a bandgap-opening interlayer bias, owing to a network of 1D conductive states at domain boundaries. Here, the authors report Aharonov–Bohm oscillations up to 100 K, whereas at liquid helium temperatures another kind of oscillation appears, due to progressive population of the narrow minibands formed by the 2D network of 1D states inside the gap.

Journal ArticleDOI
TL;DR: In this paper, a technique for spatially mapping electron flows based on a nanotube single-electron transistor was presented, which achieves high sensitivity for both voltage and current imaging.
Abstract: A variety of physical phenomena associated with nanoscale electron transport often results in non-trivial spatial voltage and current patterns, particularly in nonlocal transport regimes. While numerous techniques have been devised to image electron flows, the need remains for a nanoscale probe capable of simultaneously imaging current and voltage distributions with high sensitivity and minimal invasiveness, in a magnetic field, across a broad range of temperatures and beneath an insulating surface. Here we present a technique for spatially mapping electron flows based on a nanotube single-electron transistor, which achieves high sensitivity for both voltage and current imaging. In a series of experiments using high-mobility graphene devices, we demonstrate the ability of our technique to visualize local aspects of intrinsically nonlocal transport, as in ballistic flows, which are not easily resolvable via existing methods. This technique should aid in understanding the physics of two-dimensional electronic devices and enable new classes of experiments that image electron flow through buried nanostructures in the quantum and interaction-dominated regimes.

Journal ArticleDOI
TL;DR: The quantum Hall effect (QHE) originates from discrete Landau levels forming in a two-dimensional electron system in a magnetic field as mentioned in this paper, which is forbidden in three dimensions because the third dimension spreads Landau level into overlapping bands, destroying the quantization.
Abstract: The quantum Hall effect (QHE) originates from discrete Landau levels forming in a two-dimensional electron system in a magnetic field1. In three dimensions, the QHE is forbidden because the third dimension spreads Landau levels into overlapping bands, destroying the quantization. Here we report the QHE in graphite crystals that are up to hundreds of atomic layers thick, a thickness at which graphite was believed to behave as a normal, bulk semimetal2. We attribute this observation to a dimensional reduction of electron dynamics in high magnetic fields, such that the electron spectrum remains continuous only in the field direction, and only the last two quasi-one-dimensional Landau bands cross the Fermi level3,4. Under these conditions, the formation of standing waves in sufficiently thin graphite films leads to a discrete spectrum allowing the QHE. Despite the large thickness, we observe differences between crystals with even and odd numbers of graphene layers. Films with odd layer numbers show reduced QHE gaps, as compared to films of similar thicknesses but with even numbers because the latter retain the inversion symmetry characteristic of bilayer graphene5,6. We also observe clear signatures of electron–electron interactions including the fractional QHE below 0.5 K. The quantum Hall effect is thought to exist only in two-dimensional materials. Here, transport measurements show that thin graphite slabs have a 2.5-dimensional version, with a parity effect for samples with odd and even number of layers.

Journal ArticleDOI
TL;DR: In this paper, a large population of typical optically silent interlayer excitons is established by electrically injecting carriers into WSe2/MoS2 type-II heterostructures which are indirect in real and k-space.
Abstract: The intriguing physics of carrier-carrier interactions, which likewise affect the operation of light emitting devices, stimulate the research on semiconductor structures at high densities of excited carriers, a limit reachable at large pumping rates or in systems with long-lived electron-hole pairs. By electrically injecting carriers into WSe2/MoS2 type-II heterostructures which are indirect in real and k-space, we establish a large population of typical optically silent interlayer excitons. Here, we reveal their emission spectra and show that the emission energy is tunable by an applied electric field. When the population is further increased by suppressing the radiative recombination rate with the introduction of an hBN spacer between WSe2 and MoS2, Auger-type and exciton-exciton annihilation processes become important. These processes are traced by the observation of an up-converted emission demonstrating that excitons gaining energy in non-radiative Auger processes can be recovered and recombine radiatively.

Journal ArticleDOI
TL;DR: It is found that hBN-encapsulation which is introduced parallel to the graphite zigzag edges preserves ABC stacking, while encapsulation along the armchair edges transforms the stacking to ABA.
Abstract: In graphite crystals, layers of graphene reside in three equivalent, but distinct, stacking positions typically referred to as A, B, and C projections. The order in which the layers are stacked def...

Journal ArticleDOI
TL;DR: This work shows that mechanically exfoliated crystals exhibit perfect proton selectivity, corroborating proton transport through the bulk without atomic-scale defects, and corroborates the previous conclusion that thermal protons can pierce defect-free two-dimensional crystals.
Abstract: Defect-free monolayers of graphene and hexagonal boron nitride are surprisingly permeable to thermal protons, despite being completely impenetrable to all gases. It remains untested whether small ions can permeate through the two-dimensional crystals. Here we show that mechanically exfoliated graphene and hexagonal boron nitride exhibit perfect Nernst selectivity such that only protons can permeate through, with no detectable flow of counterions. In the experiments, we use suspended monolayers that have few, if any, atomic-scale defects, as shown by gas permeation tests, and place them to separate reservoirs filled with hydrochloric acid solutions. Protons account for all the electrical current and chloride ions are blocked. This result corroborates the previous conclusion that thermal protons can pierce defect-free two-dimensional crystals. Besides the importance for theoretical developments, our results are also of interest for research on various separation technologies based on two-dimensional materials. Defect-free monolayers of graphene and hexagonal boron nitride are highly permeable to thermal protons, but are impenetrable to gases. Here the authors show that mechanically exfoliated crystals exhibit perfect proton selectivity, corroborating proton transport through the bulk without atomic-scale defects.

Journal ArticleDOI
TL;DR: Imaging studies show that topological protection in the quantum Hall state in graphene is undermined by edge reconstruction with a dissipation mechanism that comprises two distinct and spatially separated processes—work generation and entropy generation.
Abstract: Topology is a powerful recent concept asserting that quantum states could be globally protected against local perturbations. Dissipationless topologically protected states are thus of major fundamental interest as well as of practical importance in metrology and quantum information technology. Although topological protection can be robust theoretically, in realistic devices it is often fragile against various dissipative mechanisms, which are difficult to probe directly because of their microscopic origins. By utilizing scanning nanothermometry, we visualize and investigate microscopic mechanisms undermining the apparent topological protection in the quantum Hall state in graphene. Our simultaneous nanoscale thermal and scanning gate microscopy shows that the dissipation is governed by crosstalk between counterpropagating pairs of downstream and upstream channels that appear at graphene boundaries because of edge reconstruction. Instead of local Joule heating, however, the dissipation mechanism comprises two distinct and spatially separated processes. The work generating process that we image directly and which involves elastic tunneling of charge carriers between the quantum channels, determines the transport properties but does not generate local heat. The independently visualized heat and entropy generation process, in contrast, occurs nonlocally upon inelastic resonant scattering off single atomic defects at graphene edges, while not affecting the transport. Our findings offer a crucial insight into the mechanisms concealing the true topological protection and suggest venues for engineering more robust quantum states for device applications.

Journal ArticleDOI
21 Oct 2019-Nature
TL;DR: In this article, the authors show that topological protection in the quantum Hall state in graphene is undermined by edge reconstruction with a dissipation mechanism that comprises two distinct and spatially separated processes, namely, work generation and entropy generation.
Abstract: Topology is a powerful recent concept asserting that quantum states could be globally protected against local perturbations1,2. Dissipationless topologically protected states are therefore of major fundamental interest as well as of practical importance in metrology and quantum information technology. Although topological protection can be robust theoretically, in realistic devices it is often susceptible to various dissipative mechanisms, which are difficult to study directly because of their microscopic origins. Here we use scanning nanothermometry3 to visualize and investigate the microscopic mechanisms that undermine dissipationless transport in the quantum Hall state in graphene. Simultaneous nanoscale thermal and scanning gate microscopy shows that the dissipation is governed by crosstalk between counterpropagating pairs of downstream and upstream channels that appear at graphene boundaries as a result of edge reconstruction. Instead of local Joule heating, however, the dissipation mechanism comprises two distinct and spatially separated processes. The work-generating process that we image directly, which involves elastic tunnelling of charge carriers between the quantum channels, determines the transport properties but does not generate local heat. By contrast, the heat and entropy generation process—which we visualize independently—occurs nonlocally upon resonant inelastic scattering from single atomic defects at graphene edges, and does not affect transport. Our findings provide an insight into the mechanisms that conceal the true topological protection, and suggest routes towards engineering more robust quantum states for device applications. Imaging studies show that topological protection in the quantum Hall state in graphene is undermined by edge reconstruction with a dissipation mechanism that comprises two distinct and spatially separated processes—work generation and entropy generation.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate simultaneous use of in-plane and van der Waals heterostructures to build vertical single electron tunnelling transistors, which allows a dramatic reduction of the number of localised states along the perimeter of the quantum dots.
Abstract: Despite a rich choice of two-dimensional materials, which exists these days, heterostructures, both vertical (van der Waals) and in-plane, offer an unprecedented control over the properties and functionalities of the resulted structures. Thus, planar heterostructures allow p-n junctions between different two-dimensional semiconductors and graphene nanoribbons with well-defined edges; and vertical heterostructures resulted in the observation of superconductivity in purely carbon-based systems and realisation of vertical tunnelling transistors. Here we demonstrate simultaneous use of in-plane and van der Waals heterostructures to build vertical single electron tunnelling transistors. We grow graphene quantum dots inside the matrix of hexagonal boron nitride, which allows a dramatic reduction of the number of localised states along the perimeter of the quantum dots. The use of hexagonal boron nitride tunnel barriers as contacts to the graphene quantum dots make our transistors reproducible and not dependent on the localised states, opening even larger flexibility when designing future devices. The possibility to combine planar and van der Waals heterostructures holds great promise for nanoscale electronic devices. Here, the authors report an innovative method to synthesise embedded graphene quantum dots within hexagonal boron nitride matrix for vertical tunnelling single electron transistor applications.

Journal ArticleDOI
TL;DR: The concept of chemical conversion of cleavable thin van der Waals crystals into covalently bonded noncleavable ones opens exciting prospects for synthesizing a wide variety of novel atomically thin covalent crystals.
Abstract: Most of the studied two-dimensional (2D) materials have been obtained by exfoliation of van der Waals crystals. Recently, there has been growing interest in fabricating synthetic 2D crystals which ...

Journal ArticleDOI
TL;DR: In this article, it was shown that electron-electron umklapp scattering dominates the transport properties of graphene-on-boron-nitride superlattices over a wide range of temperature and carrier density.
Abstract: In electronic transport, umklapp processes play a fundamental role as the only intrinsic mechanism that allows electrons to transfer momentum to the crystal lattice and, therefore, provide a finite electrical resistance in pure metals1,2. However, umklapp scattering is difficult to demonstrate in experiment, as it is easily obscured by other dissipation mechanisms1–6. Here we show that electron–electron umklapp scattering dominates the transport properties of graphene-on-boron-nitride superlattices over a wide range of temperature and carrier density. The umklapp processes cause giant excess resistivity that rapidly increases with increasing superlattice period and are responsible for deterioration of the room-temperature mobility by more than an order of magnitude as compared to standard, non-superlattice graphene devices. The umklapp scattering exhibits a quadratic temperature dependence accompanied by a pronounced electron–hole asymmetry with the effect being much stronger for holes than electrons. In addition to being of fundamental interest, our results have direct implications for design of possible electronic devices based on heterostructures featuring superlattices. An increase in electrical resistance caused by the fundamental process of electrons scattering off of each other (umklapp scattering) is observed in graphene superlattice devices. This will limit the electrical properties of such devices.

Journal ArticleDOI
TL;DR: The results show strongly enhanced magneto-optical activity in the infrared and terahertz ranges, characterized by absorption of light near to the 50% maximum allowed, 100% magnetic circular dichroism and high Faraday rotation.
Abstract: When two-dimensional electron gases (2DEGs) are exposed to a magnetic field, they resonantly absorb electromagnetic radiation via electronic transitions between Landau levels1. In 2DEGs with a Dirac spectrum, such as graphene, theory predicts an exceptionally high infrared magneto-absorption, even at zero doping2-5. However, the measured Landau-level magneto-optical effects in graphene have been much weaker than expected2,6-12 because of imperfections in the samples available for such experiments. Here, we measure magneto-transmission and Faraday rotation in high-mobility encapsulated monolayer graphene using a custom-designed set-up for magneto-infrared microspectroscopy. Our results show strongly enhanced magneto-optical activity in the infrared and terahertz ranges, characterized by absorption of light near to the 50% maximum allowed, 100% magnetic circular dichroism and high Faraday rotation. Considering that sizeable effects have been already observed at routinely achievable magnetic fields, our findings demonstrate the potential of magnetic tuning in 2D Dirac materials for long-wavelength optoelectronics and plasmonics.

Journal ArticleDOI
TL;DR: Few-layer micas show proton permeation across the sheet, exceeding that of graphene and hBN by one to two orders of magnitude, and this work indicates that there could be other 2D crystals with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.
Abstract: Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons1,2. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons1. This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials3, which extends from ∼100 °C to 500 °C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm−2 at 500 °C, well above the current requirements for the industry roadmap4. We attribute the fast proton permeation to ~5-A-wide tubular channels that perforate micas’ crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals5 with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications. Few-layer micas show proton permeation across the sheet, exceeding that of graphene and hBN by one to two orders of magnitude.

Journal ArticleDOI
TL;DR: In this article, the electron-electron scattering length in graphene was measured using gate dielectric thicknesses of a few nm, much smaller than a typical separation between electrons.
Abstract: Electron-electron interactions play a critical role in many condensed matter phenomena, and it is tempting to find a way to control them by changing the interactions' strength. One possible approach is to place a studied system in proximity of a metal, which induces additional screening and hence suppresses electron interactions. Here, using devices with atomically-thin gate dielectrics and atomically-flat metallic gates, we measure the electron-electron scattering length in graphene and report qualitative deviations from the standard behavior. The changes induced by screening become important only at gate dielectric thicknesses of a few nm, much smaller than a typical separation between electrons. Our theoretical analysis agrees well with the scattering rates extracted from measurements of electron viscosity in monolayer graphene and of umklapp electron-electron scattering in graphene superlattices. The results provide a guidance for future attempts to achieve proximity screening of many-body phenomena in two-dimensional systems.

Journal ArticleDOI
TL;DR: This paper showed that mechanically exfoliated graphene and hexagonal boron nitride exhibit perfect Nernst selectivity such that only protons can permeate through, with no detectable flow of counterions.
Abstract: Defect-free monolayers of graphene and hexagonal boron nitride were previously shown to be surprisingly permeable to thermal protons, despite being completely impenetrable to all gases. It remains untested whether small ions can permeate through the two-dimensional crystals. Here we show that mechanically exfoliated graphene and hexagonal boron nitride exhibit perfect Nernst selectivity such that only protons can permeate through, with no detectable flow of counterions. In the experiments, we used suspended monolayers that had few if any atomic-scale defects, as shown by gas permeation tests, and placed them to separate reservoirs filled with hydrochloric acid solutions. Protons accounted for all the electrical current and chloride ions were blocked. This result corroborates the previous conclusion that thermal protons can pierce defect-free two-dimensional crystals. Besides importance for theoretical developments, our results are also of interest for research on various separation technologies based on two-dimensional materials.

Journal ArticleDOI
TL;DR: In this paper, it was shown that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons.
Abstract: Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons. For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons. This seemed to suggest that only one-atom-thick crystals could be used as proton conducting membranes. Here we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one-two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials, which extends from 100 C to 500 C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm-2 at 500 C, well above the current requirements for the industry roadmap. We attribute the fast proton permeation to 5 A-wide tubular channels that perforate micas' crystal structure which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals with similar nm-scale channels, which could help close the materials gap in proton-conducting applications.

Journal ArticleDOI
TL;DR: In this article, the authors measured magneto-transmission and Faraday rotation in highmobility encapsulated monolayer graphene using a custom designed setup for magnetoinfrared microspectroscopy.
Abstract: When two-dimensional electron gases (2DEGs) are exposed to magnetic field, they resonantly absorb electromagnetic radiation via electronic transitions between Landau levels (LLs). In 2DEGs with a Dirac spectrum, such as graphene, theory predicts an exceptionally high infrared magneto-absorption, even at zero doping. However, the measured LL magneto-optical effects in graphene have been much weaker than expected because of imperfections in the samples available so far for such experiments. Here we measure magneto-transmission and Faraday rotation in high-mobility encapsulated monolayer graphene using a custom designed setup for magneto-infrared microspectroscopy. Our results show a strongly enhanced magneto-optical activity in the infrared and terahertz ranges characterized by a maximum allowed (50%) absorption of light, a 100% magnetic circular dichroism as well as a record high Faraday rotation. Considering that sizeable effects have been already observed at routinely achievable magnetic fields, our findings demonstrate a new potential of magnetic tuning in 2D Dirac materials for long-wavelength optoelectronics and plasmonics.

Journal ArticleDOI
TL;DR: In this article, the authors performed magnetotransport measurements on graphene/hexagonal boron-nitride Hall bars and showed that wider devices reveal additional quantum effects, such as magnetoresistance oscillations that are caused by resonant scattering of Landau-quantized Dirac electrons by acoustic phonons in graphene.
Abstract: Van der Waals materials and their heterostructures offer a versatile platform for studying a variety of quantum transport phenomena due to their unique crystalline properties and the exceptional ability in tuning their electronic spectrum. However, most experiments are limited to devices that have lateral dimensions of only a few micrometres. Here, we perform magnetotransport measurements on graphene/hexagonal boron-nitride Hall bars and show that wider devices reveal additional quantum effects. In devices wider than ten micrometres we observe distinct magnetoresistance oscillations that are caused by resonant scattering of Landau-quantised Dirac electrons by acoustic phonons in graphene. The study allows us to accurately determine graphene's low energy phonon dispersion curves and shows that transverse acoustic modes cause most of phonon scattering. Our work highlights the crucial importance of device width when probing quantum effects and also demonstrates a precise, spectroscopic method for studying electron-phonon interactions in van der Waals heterostructures.