scispace - formally typeset
Search or ask a question

Showing papers by "Eli S. Rykoff published in 2016"


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a framework for the integration of the INSU-IN2P3-INP project with the National Science and Technology Facilities Council (NSF) and the Higher Education Funding Council for England (HEFL).
Abstract: ESA; CNES (France); CNRS/INSU-IN2P3-INP (France); ASI (Italy); CNR (Italy); INAF (Italy); NASA (USA); DoE (USA); STFC (UK); UKSA (UK); CSIC (Spain); MINECO (Spain); JA (Spain); RES (Spain); Tekes (Finland); AoF (Finland); CSC (Finland); DLR (Germany); MPG (Germany); CSA (Canada); DTU Space (Denmark); SER/SSO (Switzerland); RCN (Norway); SFI (Ireland); FCT/MCTES (Portugal); ERC (EU); PRACE (EU); Higher Education Funding Council for England; Science and Technology Facilities Council; Alfred P. Sloan Foundation; National Science Foundation; US Department of Energy Office of Science

1,178 citations


Posted Content
TL;DR: DESI as discussed by the authors is a ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey.
Abstract: DESI (Dark Energy Spectroscopic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations (BAO) and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. To trace the underlying dark matter distribution, spectroscopic targets will be selected in four classes from imaging data. We will measure luminous red galaxies up to $z=1.0$. To probe the Universe out to even higher redshift, DESI will target bright [O II] emission line galaxies up to $z=1.7$. Quasars will be targeted both as direct tracers of the underlying dark matter distribution and, at higher redshifts ($ 2.1 < z < 3.5$), for the Ly-$\alpha$ forest absorption features in their spectra, which will be used to trace the distribution of neutral hydrogen. When moonlight prevents efficient observations of the faint targets of the baseline survey, DESI will conduct a magnitude-limited Bright Galaxy Survey comprising approximately 10 million galaxies with a median $z\approx 0.2$. In total, more than 30 million galaxy and quasar redshifts will be obtained to measure the BAO feature and determine the matter power spectrum, including redshift space distortions.

965 citations


Journal ArticleDOI
T. M. C. Abbott, F. B. Abdalla1, Jelena Aleksić2, S. Allam3  +153 moreInstitutions (43)
TL;DR: In this paper, the authors presented the results of the Dark Energy Survey (DES) 2013, 2014, 2015, 2016, 2017, 2018, 2019 and 2019 at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.
Abstract: US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia; Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; Collaborating Institutions in the Dark Energy Survey; National Science Foundation [AST-1138766]; University of California at Santa Cruz; University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago, University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; European Research Council [FP7/291329]; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union [240672, 291329, 306478]

789 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy1  +1619 moreInstitutions (220)
TL;DR: In this article, the sky localization of the first observed compact binary merger is presented, where the authors describe the low-latency analysis of the LIGO data and present a sky localization map.
Abstract: A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.

288 citations


Journal ArticleDOI
Marguerite Pierre1, Florian Pacaud2, C. Adami3, Sinan Aliş4, Sinan Aliş5, Bruno Altieri, N. Baran6, C. Benoist4, Mark Birkinshaw7, Angela Bongiorno, Malcolm N. Bremer7, Marcella Brusa8, A. Butler9, Paolo Ciliegi, L. Chiappetti, Nicolas Clerc10, Pier Stefano Corasaniti11, Jean Coupon12, C. De Breuck13, J. Démoclès14, Shantanu Desai15, J. Delhaize6, Julien Devriendt16, Y. Dubois17, Dominique Eckert12, Andrii Elyiv, Stefano Ettori, August E. Evrard18, L. Faccioli1, Arya Farahi18, Chiara Ferrari4, François Finet19, François Finet20, Sotiria Fotopoulou12, N. Fourmanoit12, Poshak Gandhi21, Fabio Gastaldello, R. Gastaud1, I. Georgantopoulos, Paul Giles7, L. Guennou22, L. Guennou23, V. Guglielmo, Cathy Horellou24, K. Husband7, Minh Huynh9, A. Iovino25, Martin Kilbinger1, Elias Koulouridis, S. Lavoie26, A. M. C. Le Brun27, J. P. Le Fevre1, C. Lidman28, M. Lieu14, Chieh-An Lin1, Adam Mantz29, Ben J Maughan7, Sophie Maurogordato4, Ian G. McCarthy27, Sean L. McGee14, Jean-Baptiste Melin1, O. Melnyk6, O. Melnyk30, Felipe Menanteau31, Mladen Novak6, S. Paltani12, Manolis Plionis32, Manolis Plionis33, Bianca M. Poggianti, Daniel Pomarède1, Emanuela Pompei13, Trevor J. Ponman14, M. E. Ramos-Ceja2, Piero Ranalli, David Rapetti34, S. Raychaudury35, Thomas H. Reiprich2, H. J. A. Röttgering36, E. Rozo37, Eli S. Rykoff37, T. Sadibekova1, José Paulo Santos, J. L. Sauvageot1, C. Schimd3, Mauro Sereno8, Graham P. Smith14, Vernesa Smolčić6, Steven L. Snowden38, David N. Spergel39, S. A. Stanford40, Jean Surdej19, Patrick Valageas, A. Valotti1, I. Valtchanov, Cristian Vignali8, Jon Willis26, F. Ziparo14 
TL;DR: The XXL-XMM survey as discussed by the authors provides constraints on the dark energy equation of state from the space-time distribution of clusters of galaxies and serves as a pathfinder for future, wide-area X-ray missions.
Abstract: Context. The quest for the cosmological parameters that describe our universe continues to motivate the scientific community to undertake very large survey initiatives across the electromagnetic spectrum. Over the past two decades, the Chandra and XMM-Newton observatories have supported numerous studies of X-ray-selected clusters of galaxies, active galactic nuclei (AGNs), and the X-ray background. The present paper is the first in a series reporting results of the XXL-XMM survey; it comes at a time when the Planck mission results are being finalised. Aims. We present the XXL Survey, the largest XMM programme totaling some 6.9 Ms to date and involving an international consortium of roughly 100 members. The XXL Survey covers two extragalactic areas of 25 deg(2) each at a point-source sensitivity of similar to 5 x 10(-15) erg s(-1) cm(-2) in the [0.5-2] keV band (completeness limit). The survey's main goals are to provide constraints on the dark energy equation of state from the space-time distribution of clusters of galaxies and to serve as a pathfinder for future, wide-area X-ray missions. We review science objectives, including cluster studies, AGN evolution, and large-scale structure, that are being conducted with the support of approximately 30 follow-up programmes. Methods. We describe the 542 XMM observations along with the associated multi-lambda and numerical simulation programmes. We give a detailed account of the X-ray processing steps and describe innovative tools being developed for the cosmological analysis. Results. The paper provides a thorough evaluation of the X-ray data, including quality controls, photon statistics, exposure and background maps, and sky coverage. Source catalogue construction and multi-lambda associations are briefly described. This material will be the basis for the calculation of the cluster and AGN selection functions, critical elements of the cosmological and science analyses. Conclusions. The XXL multi-lambda data set will have a unique lasting legacy value for cosmological and extragalactic studies and will serve as a calibration resource for future dark energy studies with clusters and other X-ray selected sources. With the present article, we release the XMM XXL photon and smoothed images along with the corresponding exposure maps.

272 citations


Journal ArticleDOI
Eli S. Rykoff1, Eduardo Rozo2, Devon L. Hollowood3, A. Bermeo-Hernandez4, Tesla E. Jeltema3, Julian A. Mayers4, A. K. Romer4, P. Rooney4, A. Saro5, C. Vergara Cervantes4, Risa H. Wechsler1, H. Wilcox6, T. M. C. Abbott, F. B. Abdalla7, F. B. Abdalla8, S. Allam9, J. Annis9, A. Benoit-Lévy10, A. Benoit-Lévy8, Gary Bernstein11, E. Bertin10, David Brooks8, D. L. Burke1, Diego Capozzi6, A. Carnero Rosell, M. Carrasco Kind12, Francisco J. Castander, M. Childress13, Chris A. Collins14, Carlos E. Cunha1, C. B. D'Andrea6, C. B. D'Andrea15, L. N. da Costa, Tamara M. Davis16, Shantanu Desai17, Shantanu Desai5, H. T. Diehl9, J. P. Dietrich5, J. P. Dietrich17, Peter Doel8, August E. Evrard18, D. A. Finley9, B. Flaugher9, Pablo Fosalba, Joshua A. Frieman9, Karl Glazebrook19, Daniel A. Goldstein20, Daniel A. Goldstein21, Daniel Gruen, Robert A. Gruendl12, G. Gutierrez9, Matt Hilton22, K. Honscheid23, Ben Hoyle5, David J. James, Scott T. Kay24, Kyler Kuehn25, N. Kuropatkin9, Ofer Lahav8, Geraint F. Lewis26, C. Lidman25, Marcos Lima27, M. A. G. Maia, Robert G. Mann28, Jennifer L. Marshall29, Paul Martini23, Peter Melchior30, Christopher J. Miller18, Ramon Miquel, Joseph J. Mohr31, Robert C. Nichol6, Brian Nord9, Ricardo L. C. Ogando, A. A. Plazas32, Kevin Reil1, Martin Sahlén33, E. J. Sanchez, Basilio X. Santiago34, V. Scarpine9, Michael Schubnell18, I. Sevilla-Noarbe12, R. C. Smith, Marcelle Soares-Santos9, Flavia Sobreira9, John P. Stott33, E. Suchyta11, M. E. C. Swanson12, Gregory Tarle18, Daniel Thomas6, Douglas L. Tucker9, Syed Uddin19, Pedro T. P. Viana35, V. Vikram36, Alistair R. Walker, Yanming Zhang18 
TL;DR: The redMaPPer algorithm as discussed by the authors was applied to 150 deg(2) of Science Verification (SV) data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set.
Abstract: We describe updates to the redMaPPer algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to 150 deg(2) of Science Verification (SV) data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited and contains 786 clusters with richness lambda > 20 (roughly equivalent to M500c greater than or similar to 10(14) h(70)(-1)M(circle dot)) and 0.2 < z < 0.9. The DR8 catalog consists of 26,311 clusters with 0.08 < z < 0.6, with a sharply increasing richness threshold as a function of redshift for z greater than or similar to 0.35. The photometric redshift performance of both catalogs is shown to be excellent, with photometric redshift uncertainties controlled at the sigma(z)/(1+ z) similar to 0.01 level for z greater than or similar to 0.7, rising to similar to 0.02 at z similar to 0.9 in DES SV. We make use of Chandra and XMM X-ray and South Pole Telescope Sunyaev-Zeldovich data to show that the centering performance and mass-richness scatter are consistent with expectations based on prior runs of redMaPPer on SDSS data. We also show how the redMaPPer photo-z and richness estimates are relatively insensitive to imperfect star/galaxy separation and small-scale star masks.

258 citations


Journal ArticleDOI
M. Jarvis1, E. Sheldon2, Joe Zuntz3, T. Kacprzak4, Sarah Bridle3, Adam Amara4, Robert Armstrong5, Matthew R. Becker6, Gary Bernstein1, C. Bonnett7, Chihway Chang4, R. Das8, J. P. Dietrich9, Alex Drlica-Wagner10, Tim Eifler1, Tim Eifler11, C. Gangkofner9, Daniel Gruen9, Daniel Gruen12, Michael Hirsch13, E. M. Huff14, Bhuvnesh Jain1, Steve Kent10, Donnacha Kirk13, Niall MacCrann3, Peter Melchior14, A. A. Plazas11, Alexandre Refregier4, Barnaby Rowe13, Eli S. Rykoff6, S. Samuroff3, Carles Sanchez7, E. Suchyta14, Michael Troxel3, Vinu Vikram15, T. M. C. Abbott, F. B. Abdalla13, F. B. Abdalla16, S. Allam10, J. Annis10, A. Benoit-Lévy13, E. Bertin17, David Brooks13, E. Buckley-Geer10, D. L. Burke6, Diego Capozzi18, A. Carnero Rosell, M. Carrasco Kind19, J. Carretero7, Francisco J. Castander20, Joseph Clampitt1, Martin Crocce20, Carlos E. Cunha6, C. B. D'Andrea18, L. N. da Costa, Darren L. DePoy21, Shantanu Desai9, H. T. Diehl10, Peter Doel13, A. Fausti Neto, B. Flaugher10, Pablo Fosalba20, Joshua A. Frieman10, Enrique Gaztanaga20, D. W. Gerdes8, Robert A. Gruendl19, G. Gutierrez10, K. Honscheid14, David J. James, Kyler Kuehn22, Nikolay Kuropatkin10, Ofer Lahav13, Tianjun Li21, Marcos Lima23, M. March1, P. Martini14, Ramon Miquel7, Joseph J. Mohr12, Eric H. Neilsen10, Brian Nord10, Ricardo L. C. Ogando, Kevin Reil6, A. K. Romer24, A. Roodman6, M. Sako1, E. J. Sanchez, V. Scarpine10, Michael Schubnell8, I. Sevilla-Noarbe19, R. C. Smith, Marcelle Soares-Santos10, Flavia Sobreira10, M. E. C. Swanson19, Gregory Tarle8, J. J. Thaler19, Daniel Thomas18, Alistair R. Walker, Risa H. Wechsler6 
TL;DR: In this paper, weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES).
Abstract: We present weak lensing shear catalogues for 139 square degrees of data taken during the Science Verification (SV) time for the new Dark Energy Camera (DECam) being used for the Dark Energy Survey (DES). We describe our object selection, point spread function estimation and shear measurement procedures using two independent shear pipelines, IM3SHAPE and NGMIX, which produce catalogues of 2.12 million and 3.44 million galaxies respectively. We detail a set of null tests for the shear measurements and find that they pass the requirements for systematic errors at the level necessary for weak lensing science applications using the SV data. We also discuss some of the planned algorithmic improvements that will be necessary to produce sufficiently accurate shear catalogues for the full 5-year DES, which is expected to cover 5000 square degrees.

174 citations


Journal ArticleDOI
TL;DR: Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; Case Western Reserve University, University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle
Abstract: Alfred P. Sloan Foundation; National Science Foundation; U.S. Department of Energy; National Aeronautics and Space Administration; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences (LAMOST); Los Alamos National Laboratory; Max-Planck-Institute for Astronomy (MPIA); Max-Planck-Institute for Astrophysics (MPA); New Mexico State University; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; Spanish MultiDark Consolider Project [CSD2009-00064]; World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan; FIRST program "Subaru Measurements of Images and Redshifts (SuMIRe)", CSTP, Japan; JSPS Promotion of Science [15K17600, 16H01089, 23340061, 26610058, 26800093]; MEXT [15H05893, 15K21733, 15H05892]; JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers; Japan Society for the Promotion of Science (JSPS); Jet Propulsion Laboratory, California Institute of Technology; Kavli Institute for Cosmological Physics at the University of Chicago [PHY-1125897]; University of Tokyo-Princeton strategic partnership grant; Department of Energy Early Career Award program

173 citations


Journal ArticleDOI
Eduardo Rozo1, Eli S. Rykoff2, Alexandra Abate1, C. Bonnett3, Martin Crocce, C. Davis2, C. Davis4, Ben Hoyle5, Boris Leistedt6, Hiranya V. Peiris6, Risa H. Wechsler2, T. M. C. Abbott, F. B. Abdalla6, Manda Banerji7, A. H. Bauer, A. Benoit-Lévy6, Gary Bernstein8, E. Bertin9, David Brooks6, E. Buckley-Geer10, D. L. Burke2, Diego Capozzi11, A. Carnero Rosell, Daniela Carollo12, M. Carrasco Kind13, J. Carretero3, Francisco J. Castander, M. J. Childress14, Carlos E. Cunha2, C. B. D'Andrea11, Tamara M. Davis4, Tamara M. Davis2, Darren L. DePoy15, Shantanu Desai5, H. T. Diehl10, J. P. Dietrich5, Peter Doel6, Tim Eifler16, Tim Eifler8, August E. Evrard17, A. Fausti Neto, B. Flaugher10, P. Fosalba, Joshua A. Frieman10, Enrique Gaztanaga, D. W. Gerdes17, Karl Glazebrook18, Daniel Gruen19, Robert A. Gruendl13, K. Honscheid20, David J. James, M. Jarvis8, A. G. Kim21, Kyler Kuehn22, Nikolay Kuropatkin10, Ofer Lahav6, C. Lidman22, Marcos Lima23, Marcio A. G. Maia, M. March8, Paul Martini20, Peter Melchior20, C. J. Miller17, Ramon Miquel3, Joseph J. Mohr19, Robert C. Nichol11, Brian Nord10, C. R. O'Neill4, Ricardo L. C. Ogando, A. A. Plazas16, A. K. Romer24, A. Roodman2, M. Sako8, E. J. Sanchez, Basilio X. Santiago25, Michael Schubnell17, I. Sevilla-Noarbe13, R. C. Smith, Marcelle Soares-Santos10, Flavia Sobreira10, E. Suchyta20, M. E. C. Swanson13, J. J. Thaler13, Daniel Thomas11, Syed Uddin18, Vinu Vikram26, Alistair R. Walker, W. C. Wester10, Y. Zhang17, L. N. da Costa 
TL;DR: RedMaGiC as mentioned in this paper is an automated algorithm for selecting luminous red galaxies (LRGs) by self-training the color cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density.
Abstract: We introduce redMaGiC, an automated algorithm for selecting luminous red galaxies (LRGs). The algorithm was specifically developed to minimize photometric redshift uncertainties in photometric large-scale structure studies. redMaGiC achieves this by self-training the colour cuts necessary to produce a luminosity-thresholded LRG sample of constant comoving density. We demonstrate that redMaGiC photo-zs are very nearly as accurate as the best machine learning-based methods, yet they require minimal spectroscopic training, do not suffer from extrapolation biases, and are very nearly Gaussian. We apply our algorithm to Dark Energy Survey (DES) Science Verification (SV) data to produce a redMaGiC catalogue sampling the redshift range z is an element of [0.2, 0.8]. Our fiducial sample has a comoving space density of 10(-3) (h(-1) Mpc)(-3), and a median photo-z bias (z(spec) - z(photo)) and scatter (sigma(z)/(1 + z)) of 0.005 and 0.017, respectively. The corresponding 5 sigma outlier fraction is 1.4 per cent. We also test our algorithm with Sloan Digital Sky Survey Data Release 8 and Stripe 82 data, and discuss how spectroscopic training can be used to control photo-z biases at the 0.1 per cent level.

172 citations


Journal ArticleDOI
Eli S. Rykoff1, Eduardo Rozo2, Devon L. Hollowood3, A. Bermeo-Hernandez4, Tesla E. Jeltema3, Julian A. Mayers4, A. K. Romer4, P. Rooney4, A. Saro5, C. Vergara Cervantes4, Risa H. Wechsler1, H. Wilcox6, T. M. C. Abbott, F. B. Abdalla7, F. B. Abdalla8, S. Allam9, J. Annis9, A. Benoit-Lévy10, A. Benoit-Lévy7, Gary Bernstein11, E. Bertin10, David Brooks7, D. L. Burke1, Diego Capozzi6, A. Carnero Rosell, M. Carrasco Kind12, Francisco J. Castander, M. Childress13, Chris A. Collins14, Carlos E. Cunha1, C. B. D'Andrea6, C. B. D'Andrea15, L. N. da Costa, Tamara M. Davis16, Shantanu Desai17, Shantanu Desai5, H. T. Diehl9, J. P. Dietrich5, J. P. Dietrich17, Peter Doel7, August E. Evrard18, D. A. Finley9, B. Flaugher9, Pablo Fosalba, Joshua A. Frieman9, Karl Glazebrook19, Daniel A. Goldstein20, Daniel A. Goldstein21, Daniel Gruen, Robert A. Gruendl12, G. Gutierrez9, Matt Hilton22, K. Honscheid23, Ben Hoyle5, David J. James, Scott T. Kay24, Kyler Kuehn25, N. Kuropatkin9, Ofer Lahav7, Geraint F. Lewis26, C. Lidman25, Marcos Lima27, M. A. G. Maia, Robert G. Mann28, Jennifer L. Marshall29, Paul Martini23, Peter Melchior30, Christopher J. Miller18, Ramon Miquel, Joseph J. Mohr31, Robert C. Nichol6, Brian Nord9, Ricardo L. C. Ogando, A. A. Plazas32, Kevin Reil1, Martin Sahlén33, E. J. Sanchez, Basilio X. Santiago34, V. Scarpine9, Michael Schubnell18, I. Sevilla-Noarbe12, R. C. Smith, Marcelle Soares-Santos9, Flavia Sobreira9, John P. Stott33, E. Suchyta11, M. E. C. Swanson12, Gregory Tarle18, Daniel Thomas6, Douglas L. Tucker9, Syed Uddin19, Pedro T. P. Viana35, V. Vikram36, Alistair R. Walker, Yanming Zhang18 
TL;DR: In this paper, the authors describe updates to the Redmapper{} algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys, applied to data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set.
Abstract: We describe updates to the \redmapper{} algorithm, a photometric red-sequence cluster finder specifically designed for large photometric surveys. The updated algorithm is applied to $150\,\mathrm{deg}^2$ of Science Verification (SV) data from the Dark Energy Survey (DES), and to the Sloan Digital Sky Survey (SDSS) DR8 photometric data set. The DES SV catalog is locally volume limited, and contains 786 clusters with richness $\lambda>20$ (roughly equivalent to $M_{\rm{500c}}\gtrsim10^{14}\,h_{70}^{-1}\,M_{\odot}$) and $0.2

156 citations


Journal ArticleDOI
C. Bonnett, Michael Troxel, W. G. Hartley, Adam Amara, Boris Leistedt, Matthew R. Becker1, Gary Bernstein, Sarah Bridle, Claudio Bruderer, M. T. Busha, M. Carrasco Kind, M. J. Childress, Francisco J. Castander, Chihway Chang, Martin Crocce, Tamara M. Davis, Tim Eifler, Joshua A. Frieman, C. Gangkofner, Enrique Gaztanaga, Karl Glazebrook, Daniel Gruen2, T. Kacprzak, A. L. King, J. Kwan, Ofer Lahav, Geraint F. Lewis, C. Lidman, Huan Lin, N. MacCrann, Ramon Miquel, C. R. O'Neill, Antonella Palmese, H. V. Peiris, A. Refregier, E. Rozo, Eli S. Rykoff3, I. Sadeh, Carles Sanchez, E. Sheldon, S. A. Uddin, Risa H. Wechsler1, Joe Zuntz, T. M. C. Abbott, F. B. Abdalla, S. Allam, Robert Armstrong, Manda Banerji4, A. H. Bauer, A. Benoit-Lévy, E. Bertin, David Brooks, E. Buckley-Geer, D. L. Burke3, D. Capozzi, A. Carnero Rosell, J. Carretero, Carlos E. Cunha1, C. B. D'Andrea, L. N. da Costa, Darren L. DePoy, Shantanu Desai, H. T. Diehl, J. P. Dietrich, P. Doel, A. Fausti Neto, Enrique J. Fernández, B. Flaugher, Pablo Fosalba, D. W. Gerdes, Robert A. Gruendl, K. Honscheid, Bhuvnesh Jain, David J. James, Matt J. Jarvis, A. G. Kim, Kyler Kuehn, N. Kuropatkin, Tianjun Li, Marcos Lima, M. A. G. Maia, M. March, Jennifer L. Marshall, P. Martini, Peter Melchior, C. J. Miller, Eric H. Neilsen, Robert C. Nichol, Brian Nord, Ricardo L. C. Ogando, A. A. Plazas, Kevin Reil, A. K. Romer, A. Roodman, M. Sako, E. J. Sanchez, Basilio X. Santiago, R. C. Smith, Marcelle Soares-Santos, Flavia Sobreira, E. Suchyta, M. E. C. Swanson, Gregory Tarle, J. J. Thaler, Daniel Thomas, Vinu Vikram, Alistair R. Walker 
TL;DR: In this article, the authors present photometric redshift estimates for galaxies used in the weak lensing analysis of the DES SV data, and evaluate the performance of these methods against the matched spectroscopic catalogue.
Abstract: We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model-or machine learning-based photometric redshift methods-ANNZ2, BPZ calibrated against BCC-Ufig simulations, SKYNET, and TPZ-are analyzed. For training, calibration, and testing of these methods, we construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evaluated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-z's. From the galaxies in the DES SV shear catalogue, which have mean redshift 0.72 +/- 0.01 over the range 0.3 < z < 1.3, we construct three tomographic bins with means of z = {0.45;0.67;1.00}. These bins each have systematic uncertainties delta z <= 0.05 in the mean of the fiducial SKYNET photo-z (dz). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of sigma(8) of approximately 3%. This shift is within the one sigma statistical errors on sigma(8) for the DES SV shear catalogue. We further study the potential impact of systematic differences on the critical surface density, Sigma(crit), finding levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0.05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.

Journal ArticleDOI
T. Kacprzak1, Donnacha Kirk2, Oliver Friedrich3, Adam Amara1, Alexandre Refregier1, Laura Marian4, J. P. Dietrich5, E. Suchyta6, J. Aleksić7, David Bacon8, Matthew R. Becker9, C. Bonnett7, Sarah Bridle10, Chihway Chang1, Tim Eifler11, W. G. Hartley1, W. G. Hartley2, E. M. Huff12, Elisabeth Krause9, Niall MacCrann10, Peter Melchior13, Andrina Nicola1, S. Samuroff10, E. Sheldon14, Michael Troxel10, Jochen Weller3, Joe Zuntz10, T. M. C. Abbott, F. B. Abdalla2, F. B. Abdalla15, Robert Armstrong13, A. Benoit-Lévy16, A. Benoit-Lévy2, Gary Bernstein6, R. A. Bernstein17, E. Bertin16, David Brooks2, D. L. Burke18, D. L. Burke9, A. Carnero Rosell, M. Carrasco Kind19, M. Carrasco Kind20, J. Carretero21, J. Carretero9, Francisco J. Castander21, Martin Crocce21, C. B. D'Andrea22, C. B. D'Andrea7, L. N. da Costa, Shantanu Desai5, H. T. Diehl23, August E. Evrard24, A. Fausti Neto, B. Flaugher23, Pablo Fosalba21, Josh Frieman23, Josh Frieman25, D. W. Gerdes24, Daniel A. Goldstein26, Daniel A. Goldstein27, Daniel Gruen9, Daniel Gruen18, Robert A. Gruendl20, Robert A. Gruendl19, G. Gutierrez23, K. Honscheid12, Bhuvnesh Jain6, David J. James, M. Jarvis6, Kyler Kuehn28, Nikolay Kuropatkin23, Ofer Lahav2, Marcos Lima29, M. March6, Jennifer L. Marshall30, P. Martini12, C. J. Miller24, Ramon Miquel31, Ramon Miquel7, Joseph J. Mohr3, Robert C. Nichol8, Brian Nord23, A. A. Plazas11, A. K. Romer4, A. Roodman18, A. Roodman9, Eli S. Rykoff9, Eli S. Rykoff18, E. J. Sanchez32, V. Scarpine23, Michael Schubnell24, I. Sevilla-Noarbe32, R. C. Smith, Marcelle Soares-Santos23, Flavia Sobreira23, M. E. C. Swanson19, Gregory Tarle24, Daniel Thomas8, V. Vikram33, Alistair R. Walker, Yanming Zhang23 
TL;DR: In this paper, a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg² field, was performed.
Abstract: Shear peak statistics has gained a lot of attention recently as a practical alternative to the two-point statistics for constraining cosmological parameters. We perform a shear peak statistics analysis of the Dark Energy Survey (DES) Science Verification (SV) data, using weak gravitational lensing measurements from a 139 deg² field. We measure the abundance of peaks identified in aperture mass maps, as a function of their signal-to-noise ratio, in the signal-to-noise range 0 4 would require significant corrections, which is why we do not include them in our analysis. We compare our results to the cosmological constraints from the two-point analysis on the SV field and find them to be in good agreement in both the central value and its uncertainty. We discuss prospects for future peak statistics analysis with upcoming DES data.

Posted Content
Amir Aghamousa1, Francisco Prada2, Ginevra Favole3, K. Honscheid4  +294 moreInstitutions (35)
TL;DR: DESI (Dark Energy Spectropic Instrument) as mentioned in this paper is a ground-based dark energy experiment that will study baryon acoustic oscillations and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey.
Abstract: DESI (Dark Energy Spectropic Instrument) is a Stage IV ground-based dark energy experiment that will study baryon acoustic oscillations and the growth of structure through redshift-space distortions with a wide-area galaxy and quasar redshift survey. The DESI instrument is a robotically-actuated, fiber-fed spectrograph capable of taking up to 5,000 simultaneous spectra over a wavelength range from 360 nm to 980 nm. The fibers feed ten three-arm spectrographs with resolution $R= \lambda/\Delta\lambda$ between 2000 and 5500, depending on wavelength. The DESI instrument will be used to conduct a five-year survey designed to cover 14,000 deg$^2$. This powerful instrument will be installed at prime focus on the 4-m Mayall telescope in Kitt Peak, Arizona, along with a new optical corrector, which will provide a three-degree diameter field of view. The DESI collaboration will also deliver a spectroscopic pipeline and data management system to reduce and archive all data for eventual public use.

Journal ArticleDOI
TL;DR: Significant evidence of halo assembly bias for SDSS redMaPPer galaxy clusters in the redshift range is presented, which could bring a significant impact on both galaxy evolution and precision cosmology.
Abstract: We present significant evidence of halo assembly bias for SDSS redMaPPer galaxy clusters in the redshift range [0.1, 0.33]. By dividing the 8,648 clusters into two subsamples based on the average member galaxy separation from the cluster center, we first show that the two subsamples havevery similar halo mass of M200m ≃ 1.9 × 10 14 h −1 M⊙ based on the weak lensing signals at small radii R ≲ 10 h −1 Mpc. However, their halo bias inferred from both the large-scale weak lensing and the projected autocorrelation functions differs by a factor of ∼1.5, which is a signature of assembly bias. The same bias hypothesis for the two subsamples is excluded at 2.5σ in the weak lensing and 4.4σ in the autocorrelation data, respectively. This result could bring a significant impact on both galaxy evolution and precision cosmology.

Journal ArticleDOI
Tommaso Giannantonio1, Tommaso Giannantonio2, Pablo Fosalba3, R. Cawthon4, Y. Omori5, Martin Crocce3, F. Elsner6, Boris Leistedt6, Scott Dodelson4, Scott Dodelson7, A. Benoit-Lévy6, Enrique Gaztanaga3, Gilbert Holder5, Hiranya V. Peiris6, Will J. Percival, Donnacha Kirk6, A. H. Bauer3, Bradford Benson4, Bradford Benson7, Gary Bernstein8, J. Carretero3, T. M. Crawford4, Robert Crittenden, Dragan Huterer9, Bhuvnesh Jain8, Elisabeth Krause10, Christian L. Reichardt11, Ashley J. Ross, G. Simard5, B. Soergel2, Antony A. Stark, K. T. Story4, Joaquin Vieira12, Jochen Weller13, T. M. C. Abbott14, F. B. Abdalla6, F. B. Abdalla15, S. Allam7, Robert Armstrong16, Manda Banerji2, R. A. Bernstein17, E. Bertin18, David Brooks6, E. Buckley-Geer7, D. L. Burke10, Diego Capozzi, John E. Carlstrom4, A. Carnero Rosell, M. Carrasco Kind12, M. Carrasco Kind19, Francisco J. Castander3, C. L. Chang14, C. L. Chang4, Carlos E. Cunha10, L. N. da Costa, C. B. D'Andrea, Darren L. DePoy20, Shantanu Desai1, H. T. Diehl7, J. P. Dietrich1, Peter Doel6, Tim Eifler21, Tim Eifler8, August E. Evrard9, A. Fausti Neto, E. Fernandez22, D. A. Finley7, B. Flaugher7, Joshua A. Frieman7, D. W. Gerdes9, Daniel Gruen13, Robert A. Gruendl19, Robert A. Gruendl12, G. Gutierrez7, W. L. Holzapfel23, K. Honscheid24, David J. James, Kyler Kuehn25, Nikolay Kuropatkin7, Ofer Lahav6, Tianjun Li20, Marcos Lima26, M. March8, Jennifer L. Marshall20, Paul Martini24, Peter Melchior24, Ramon Miquel22, Joseph J. Mohr13, Robert C. Nichol, Brian Nord7, Ricardo L. C. Ogando, A. A. Plazas21, A. K. Romer27, A. Roodman10, Eli S. Rykoff10, M. Sako8, Benjamin Saliwanchik28, E. J. Sanchez, Michael Schubnell9, I. Sevilla-Noarbe12, Robert Connon Smith, Marcelle Soares-Santos7, Flavia Sobreira7, E. Suchyta24, M. E. C. Swanson19, Gregory Tarle9, J. J. Thaler12, Daniel Thomas, Vinu Vikram14, Alistair R. Walker, Risa H. Wechsler10, Joe Zuntz29 
TL;DR: In this paper, the authors measured the cross-correlation between the galaxy density in the DES Science Verification data and the lensing of the cosmic microwave background (CMB) as reconstructed with the Planck satellite and the South Pole Telescope (SPT), and found the data are fit by a model in which the amplitude of structure in the z < 1.2 universe is 0.73 ± 0.16 times as large as predicted in the Lambda cold dark matter Planck cosmology, a 1.7sigma deviation.
Abstract: We measure the cross-correlation between the galaxy density in the Dark Energy Survey (DES) Science Verification data and the lensing of the cosmic microwave background (CMB) as reconstructed with the Planck satellite and the South Pole Telescope (SPT). When using the DES main galaxy sample over the full redshift range 0.2 2sigma) detections in all bins. Comparing to the fiducial Planck cosmology, we find the redshift evolution of the signal matches expectations, although the amplitude is consistently lower than predicted across redshift bins. We test for possible systematics that could affect our result and find no evidence for significant contamination. Finally, we demonstrate how these measurements can be used to constrain the growth of structure across cosmic time. We find the data are fit by a model in which the amplitude of structure in the z< 1.2 universe is 0.73 ± 0.16 times as large as predicted in the Lambda cold dark matter Planck cosmology, a 1.7sigma deviation.

Journal ArticleDOI
B. Soergel1, Samuel Flender2, Samuel Flender3, K. T. Story4, Lindsey Bleem3, Lindsey Bleem2, Tommaso Giannantonio1, George Efstathiou1, Eli S. Rykoff4, Eli S. Rykoff5, Bradford Benson6, Bradford Benson3, T. M. Crawford3, Scott Dodelson3, Scott Dodelson6, Salman Habib2, Salman Habib3, Katrin Heitmann2, Katrin Heitmann3, Gilbert Holder7, Bhuvnesh Jain8, Eduardo Rozo9, A. Saro10, Jochen Weller11, Jochen Weller10, F. B. Abdalla12, F. B. Abdalla13, S. Allam6, J. Annis6, Robert Armstrong14, A. Benoit-Lévy15, A. Benoit-Lévy12, Gary Bernstein8, John E. Carlstrom, A. Carnero Rosell, M. Carrasco Kind16, M. Carrasco Kind17, Francisco J. Castander18, I-Non Chiu10, R. Chown7, Martin Crocce18, Carlos E. Cunha4, C. B. D'Andrea, L. N. da Costa, T. de Haan19, Shantanu Desai10, H. T. Diehl6, J. P. Dietrich10, Peter Doel12, Juan Estrada6, August E. Evrard20, B. Flaugher6, Pablo Fosalba18, Joshua A. Frieman6, Joshua A. Frieman3, Enrique Gaztanaga18, Daniel Gruen4, Daniel Gruen5, Robert A. Gruendl17, Robert A. Gruendl16, W. L. Holzapfel19, K. Honscheid21, David J. James, Ryan Keisler4, Kyler Kuehn22, N. Kuropatkin6, Ofer Lahav12, Marcos Lima23, Jennifer L. Marshall24, Michael McDonald25, Peter Melchior14, C. J. Miller20, Ramon Miquel26, Ramon Miquel27, Brian Nord6, Ricardo L. C. Ogando, Y. Omori7, A. A. Plazas28, David Rapetti10, Christian L. Reichardt29, A. K. Romer30, A. Roodman5, A. Roodman4, Benjamin Saliwanchik31, E. J. Sanchez32, Michael Schubnell20, I. Sevilla-Noarbe32, I. Sevilla-Noarbe17, Erin Sheldon33, Robert Connon Smith, Marcelle Soares-Santos6, Flavia Sobreira, Antony A. Stark34, E. Suchyta8, M. E. C. Swanson16, Gregory Tarle20, Daniel Thomas, Joaquin Vieira17, Alistair R. Walker, Nathan Whitehorn19 
TL;DR: The Isaac Newton Studentship at the University of Cambridge as mentioned in this paper has been used for the development of a supercomputing application at the National Center for Supercomputing Applications (NCS-1138766, PLR-1248097).
Abstract: Isaac Newton Studentship at the University of Cambridge; Science and Technologies Facilities Council (STFC); Kavli Foundation; STFC [ST/L000636/1]; Australian Research Council [DP150103208]; US Department of Energy; US National Science Foundation; Ministry of Science and Education of Spain; Science and Technology Facilities Council of the United Kingdom; Higher Education Funding Council for England; National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign; Kavli Institute of Cosmological Physics at the University of Chicago; Center for Cosmology and Astro-Particle Physics at the Ohio State University; Mitchell Institute for Fundamental Physics and Astronomy at Texas AM University; Financiadora de Estudos e Projetos; Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico; Ministerio da Ciencia, Tecnologia e Inovacao; Deutsche Forschungsgemeinschaft; National Science Foundation [AST-1138766, PLR-1248097]; Argonne National Laboratory; University of California at Santa Cruz; University of Cambridge; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid; University of Chicago; University College London; DES-Brazil Consortium; University of Edinburgh; Eidgenossische Technische Hochschule (ETH) Zurich; Fermi National Accelerator Laboratory; University of Illinois at Urbana-Champaign; Institut de Ciencies de l'Espai (IEEC/CSIC); Institut de Fisica d'Altes Energies; Lawrence Berkeley National Laboratory; Ludwig-Maximilians Universitat Munchen; associated Excellence Cluster Universe; University of Michigan; National Optical Astronomy Observatory; University of Nottingham; Ohio State University; University of Pennsylvania; University of Portsmouth; SLAC National Accelerator Laboratory; Stanford University; University of Sussex; Texas AM University; MINECO [AYA2012-39559, ESP2013-48274, FPA2013-47986]; Centro de Excelencia Severo Ochoa [SEV-2012-0234]; European Research Council under the European Union including ERC [240672, 291329, 306478]; NSF Physics Frontier Center [PHY-0114422]; Gordon and Betty Moore Foundation [947]; US Department of Energy [DE-AC02-06CH11357]; DOE/SC [DE-AC02-06CH11357]

Journal ArticleDOI
Matthew R. Becker1, Michael Troxel2, Niall MacCrann2, Elisabeth Krause1, Tim Eifler3, Tim Eifler4, Oliver Friedrich5, Andrina Nicola6, Alexandre Refregier6, Adam Amara6, David Bacon7, Gary Bernstein4, C. Bonnett8, Sarah Bridle2, M. T. Busha1, Chihway Chang6, Scott Dodelson9, Scott Dodelson10, Brandon M. S. Erickson11, August E. Evrard, Joshua A. Frieman9, Joshua A. Frieman10, Enrique Gaztanaga, Daniel Gruen5, William G. Hartley6, Bhuvnesh Jain4, Matt J. Jarvis4, T. Kacprzak6, Donnacha Kirk12, Andrey V. Kravtsov9, Boris Leistedt12, Hiranya V. Peiris12, Eli S. Rykoff1, Cristiano G. Sabiu13, Carles Sanchez8, Hee-Jong Seo14, E. Sheldon15, Risa H. Wechsler1, Joe Zuntz2, T. M. C. Abbott, F. B. Abdalla12, F. B. Abdalla16, S. Allam10, Robert Armstrong17, M. Banerji18, A. H. Bauer, A. Benoit-Lévy12, E. Bertin19, E. Bertin20, David Brooks12, E. Buckley-Geer10, D. L. Burke1, Diego Capozzi7, A. Carnero Rosell, M. Carrasco Kind21, J. Carretero8, Francisco J. Castander, Martin Crocce, Carlos E. Cunha1, C. B. D'Andrea7, L. N. da Costa, Darren L. DePoy22, Shantanu Desai23, H. T. Diehl10, J. P. Dietrich23, Peter Doel12, A. Fausti Neto, E. Fernandez8, D. A. Finley10, B. Flaugher10, Pablo Fosalba, D. W. Gerdes, Robert A. Gruendl21, G. Gutierrez10, K. Honscheid14, David J. James, Kyler Kuehn24, N. Kuropatkin10, Ofer Lahav12, Tianjun Li22, Marcos Lima25, M. A. G. Maia, M. March4, P. Martini14, Peter Melchior14, C. J. Miller, Ramon Miquel8, Joseph J. Mohr5, Robert C. Nichol7, Brian Nord10, Ricardo L. C. Ogando, A. A. Plazas3, Kevin Reil1, A. K. Romer26, A. Roodman1, M. Sako4, E. J. Sanchez, V. Scarpine10, Michael Schubnell, I. Sevilla-Noarbe21, R. C. Smith, Marcelle Soares-Santos10, Flavia Sobreira10, E. Suchyta14, M. E. C. Swanson21, Gregory Tarle, J. J. Thaler21, Daniel Thomas7, Vinu Vikram27, Alistair R. Walker 
TL;DR: In this paper, the authors present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data and demonstrate that their results are robust to the choice of shear measurement pipeline, either ngmix or im3shape.
Abstract: We present measurements of weak gravitational lensing cosmic shear two-point statistics using Dark Energy Survey Science Verification data. We demonstrate that our results are robust to the choice of shear measurement pipeline, either ngmix or im3shape, and robust to the choice of two-point statistic, including both real and Fourier-space statistics. Our results pass a suite of null tests including tests for B-mode contamination and direct tests for any dependence of the two-point functions on a set of 16 observing conditions and galaxy properties, such as seeing, airmass, galaxy color, galaxy magnitude, etc. We furthermore use a large suite of simulations to compute the covariance matrix of the cosmic shear measurements and assign statistical significance to our null tests. We find that our covariance matrix is consistent with the halo model prediction, indicating that it has the appropriate level of halo sample variance. We compare the same jackknife procedure applied to the data and the simulations in order to search for additional sources of noise not captured by the simulations. We find no statistically significant extra sources of noise in the data. The overall detection significance with tomography for our highest source density catalog is 9.7 sigma . Cosmological constraints from the measurements in this work are presented in a companion paper [DES et al., Phys. Rev. D 94, 022001 (2016).].

Journal ArticleDOI
TL;DR: In this article, a new hydrogen-poor superluminous supernova (SLSN-I) discovered by the Dark Energy Survey (DES) supernova program, with additional photometric data provided by the Survey Using DECam (DECam) for Super-Luminous Supernovae.
Abstract: We present DES14X3taz, a new hydrogen-poor superluminous supernova (SLSN-I) discovered by the Dark Energy Survey (DES) supernova program, with additional photometric data provided by the Survey Using DECam for Superluminous Supernovae. Spectra obtained using Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy on the Gran Telescopio CANARIAS show DES14X3taz is an SLSN-I at z = 0.608. Multi-color photometry reveals a double-peaked light curve: a blue and relatively bright initial peak that fades rapidly prior to the slower rise of the main light curve. Our multi-color photometry allows us, for the first time, to show that the initial peak cools from 22,000 to 8000 K over 15 rest-frame days, and is faster and brighter than any published core-collapse supernova, reaching 30% of the bolometric luminosity of the main peak. No physical 56Ni-powered model can fit this initial peak. We show that a shock-cooling model followed by a magnetar driving the second phase of the light curve can adequately explain the entire light curve of DES14X3taz. Models involving the shock-cooling of extended circumstellar material at a distance of sime400 ${\text{}}{R}_{\odot }$ are preferred over the cooling of shock-heated surface layers of a stellar envelope. We compare DES14X3taz to the few double-peaked SLSN-I events in the literature. Although the rise times and characteristics of these initial peaks differ, there exists the tantalizing possibility that they can be explained by one physical interpretation.

Journal ArticleDOI
Martin Crocce1, J. Carretero2, J. Carretero1, A. H. Bauer1, Ashley J. Ross, I. Sevilla-Noarbe3, Tommaso Giannantonio4, Flavia Sobreira5, Javier Sanchez, Enrique Gaztanaga1, M. Carrasco Kind6, M. Carrasco Kind3, Carles Sanchez2, C. Bonnett2, A. Benoit-Lévy7, Robert J. Brunner6, Robert J. Brunner3, A. Carnero Rosell, R. Cawthon8, Pablo Fosalba1, William G. Hartley9, Edward J. Kim3, Boris Leistedt7, Ramon Miquel2, Hiranya V. Peiris7, Will J. Percival, Rogerio Rosenfeld10, Eli S. Rykoff11, Eli S. Rykoff12, E. J. Sanchez, T. M. C. Abbott, F. B. Abdalla7, F. B. Abdalla13, F. B. Abdalla14, S. Allam5, M. Banerji4, Gary Bernstein15, E. Bertin16, David Brooks7, E. Buckley-Geer5, D. L. Burke12, D. L. Burke11, Diego Capozzi, Francisco J. Castander1, Carlos E. Cunha11, C. B. D'Andrea, L. N. da Costa, Shantanu Desai17, H. T. Diehl5, Tim Eifler15, Tim Eifler18, August E. Evrard19, A. Fausti Neto, E. Fernandez2, D. A. Finley5, B. Flaugher5, Joshua A. Frieman5, Joshua A. Frieman8, D. W. Gerdes19, Daniel Gruen17, Daniel Gruen20, Robert A. Gruendl6, Robert A. Gruendl3, G. Gutierrez5, K. Honscheid21, David J. James, Kyler Kuehn22, Nikolay Kuropatkin5, Ofer Lahav7, Tianjun Li23, Marcos Lima24, M. A. G. Maia, M. March15, Jennifer L. Marshall23, Paul Martini21, Peter Melchior21, C. J. Miller19, Eric H. Neilsen5, Robert C. Nichol, Brian Nord5, Ricardo L. C. Ogando, A. A. Plazas18, A. K. Romer25, M. Sako15, Basilio X. Santiago26, Michael Schubnell19, Robert Connon Smith, Marcelle Soares-Santos5, E. Suchyta21, M. E. C. Swanson6, Gregory Tarle19, J. J. Thaler3, Daniel Thomas, Vinu Vikram27, Alistair R. Walker, Risa H. Wechsler11, Risa H. Wechsler12, Jochen Weller17, Jochen Weller20, Joe Zuntz28 
TL;DR: In this article, the authors study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES) and assess the impact of photometric redshift errors by comparing results using a template-based photo-z algorithm (BPZ) to a machine-learning algorithm (TPZ).
Abstract: We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 × 106 galaxies over a contiguous 116 deg2 region in five bins of photometric redshift width Deltaz = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-z algorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterize and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck Lambda cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with chi2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. We test a `linear bias' model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 per cent accuracy down to scales at least 4-10 times smaller than those on which linear theory is expected to be sufficient.

Journal ArticleDOI
TL;DR: In this paper, a new measurement method is proposed to minimize the wastage of data for any class of stars or galaxies detectable in an imaging survey, which can be used to estimate the number of stars and galaxies in the sky.
Abstract: Accurate statistical measurement with large imaging surveys has traditionally required throwing away a sizable fraction of the data. This is because most measurements have have relied on selecting nearly complete samples, where variations in the composition of the galaxy population with seeing, depth, or other survey characteristics are small. We introduce a new measurement method that aims to minimize this wastage, allowing precision measurement for any class of stars or galaxies detectable in an imaging survey. We have implemented our proposal in Balrog, a software package which embeds fake objects in real imaging in order to accurately characterize measurement biases. We also demonstrate this technique with an angular clustering measurement using Dark Energy Survey (DES) data. We first show that recovery of our injected galaxies depends on a wide variety of survey characteristics in the same way as the real data. We then construct a flux-limited sample of the faintest galaxies in DES, chosen specifically for their sensitivity to depth and seeing variations. Using the synthetic galaxies as randoms in the standard LandySzalay correlation function estimator suppresses the effects of variable survey selection by at least two orders of magnitude. Now our measured angular clustering is found to be inmore » excellent agreement with that of a matched sample drawn from much deeper, higherresolution space-based COSMOS imaging; over angular scales of 0.004° < θ < 0.2 ° , we find a best-fit scaling amplitude between the DES and COSMOS measurements of 1.00 ± 0.09. We expect this methodology to be broadly useful for extending the statistical reach of measurements in a wide variety of coming imaging surveys.« less

Journal ArticleDOI
Marcelle Soares-Santos1, Richard Kessler, Edo Berger2, J. Annis1, D. Brout3, E. Buckley-Geer1, H. S. Chen, Philip S. Cowperthwaite2, H. T. Diehl1, Zoheyr Doctor, Alex Drlica-Wagner1, Ben Farr, D. A. Finley1, B. Flaugher1, R. J. Foley4, Joshua A. Frieman1, Robert A. Gruendl4, K. Herner1, Daniel E. Holz, Huan Lin1, John Marriner1, Eric H. Neilsen1, Armin Rest5, Masao Sako3, Daniel Scolnic, Flavia Sobreira6, Alistair R. Walker, William Wester1, Brian Yanny1, T. M. C. Abbott, F. B. Abdalla7, F. B. Abdalla8, S. Allam1, Robert Armstrong9, M. Banerji10, A. Benoit-Lévy8, A. Benoit-Lévy11, R. A. Bernstein12, E. Bertin11, Duncan A. Brown13, D. L. Burke14, Diego Capozzi15, A. Carnero Rosell, M. Carrasco Kind4, J. Carretero, Francisco J. Castander, S. B. Cenko16, S. B. Cenko17, Ryan Chornock18, Martin Crocce, C. B. D'Andrea15, C. B. D'Andrea19, L. N. da Costa, Shantanu Desai20, J. P. Dietrich20, Maria R. Drout2, Tim Eifler21, Tim Eifler3, J. Estrada1, August E. Evrard22, Stephen Fairhurst23, E. Fernandez, J. A. Fischer3, Wen-fai Fong24, Pablo Fosalba, Derek B. Fox25, Chris L. Fryer26, Juan Garcia-Bellido, Enrique Gaztanaga, D. W. Gerdes22, Daniel A. Goldstein27, Daniel A. Goldstein28, Daniel Gruen14, G. Gutierrez1, K. Honscheid29, David J. James, I. Karliner4, Daniel Kasen27, Daniel Kasen28, Stephen M. Kent1, Nikolay Kuropatkin1, Kyler Kuehn30, Ofer Lahav8, Tenglin Li31, Marcos Lima32, Marcio A. G. Maia, Raffaella Margutti33, Paul Martini29, Thomas Matheson34, Richard G. McMahon10, Brian D. Metzger35, Christopher J. Miller22, Ramon Miquel, Joseph J. Mohr35, Joseph J. Mohr20, Robert C. Nichol15, Brian Nord1, Ricardo L. C. Ogando, John Peoples1, A. A. Plazas21, Eliot Quataert28, A. K. Romer36, A. Roodman14, Eli S. Rykoff14, E. J. Sanchez, V. Scarpine1, Rafe Schindler14, M. S. Schubnell22, I. Sevilla-Noarbe4, Erin S. Sheldon37, Mathew Smith19, Nathan Smith24, R. C. Smith, Albert Stebbins1, P. J. Sutton23, M. E. C. Swanson4, Gregory Tarle22, Jon J Thaler4, R. C. Thomas27, D. L. Tucker1, V. Vikram38, Risa H. Wechsler14, Jochen Weller20, Jochen Weller35 
TL;DR: In this paper, the results of a deep search for an optical counterpart to the GW150914, the first trigger from the Advanced LIGO GW detectors, were reported.
Abstract: We report the results of a deep search for an optical counterpart to the gravitational wave (GW) event GW150914, the first trigger from the Advanced LIGO GW detectors. We used the Dark Energy Camera (DECam) to image a 102 deg2 area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in the i and z bands at 4–5, 7, and 24 days after the trigger. The median 5σ point-source limiting magnitudes of our search images are i = 22.5 and z = 21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg2, corresponding to a 12% total probability in the initial map and 3% in the final map. In this area, we search for objects that decline significantly between days 4–5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i = 21.5, 21.1, 20.1 for object colors (i − z) = 1, 0, −1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.

Journal ArticleDOI
Daniel Gruen1, Oliver Friedrich1, Adam Amara2, David Bacon3, C. Bonnett4, William G. Hartley2, Bhuvnesh Jain5, M. Jarvis5, Tomasz Kacprzak2, Elisabeth Krause6, A. Mana7, A. Mana1, Eduardo Rozo8, Eli S. Rykoff6, Stella Seitz1, E. Sheldon9, Michael Troxel10, V. Vikram11, T. M. C. Abbott, F. B. Abdalla12, F. B. Abdalla13, Sahar S. Allam14, Robert Armstrong15, M. Banerji16, A. H. Bauer, Matthew R. Becker6, A. Benoit-Lévy13, Gary Bernstein5, R. A. Bernstein17, E. Bertin18, Sarah Bridle10, David Brooks13, E. Buckley-Geer14, D. L. Burke6, Diego Capozzi3, A. Carnero Rosell, M. Carrasco Kind19, J. Carretero4, Martin Crocce, Carlos Cunha6, C. B. D'Andrea3, C. B. D'Andrea20, L. N. da Costa, Darren L. DePoy21, Shantanu Desai7, H. T. Diehl14, J. P. Dietrich7, Peter Doel13, Tim Eifler22, Tim Eifler5, A. Fausti Neto, E. Fernandez4, B. Flaugher14, Pablo Fosalba, Joshua A. Frieman14, D. W. Gerdes23, Robert A. Gruendl19, G. Gutierrez14, K. Honscheid24, David J. James, Kyler Kuehn25, N. P. Kuropatkin14, Ofer Lahav13, Tenglin Li21, Marcos Lima26, M. A. G. Maia, M. March5, P. Martini24, Peter Melchior24, Christopher J. Miller23, Ramon Miquel4, Joseph J. Mohr1, Brian Nord14, Ricardo L. C. Ogando, A. A. Plazas22, Kevin Reil6, A. K. Romer27, A. Roodman6, Masao Sako5, E. J. Sanchez, V. Scarpine14, M. S. Schubnell23, I. Sevilla-Noarbe19, R. C. Smith, Marcelle Soares-Santos14, Flavia Sobreira14, E. Suchyta24, M. E. C. Swanson19, Gregory Tarle23, Jon J Thaler19, Daniel Thomas3, Alistair R. Walker, Risa H. Wechsler6, Jochen Weller1, Yanming Zhang23, Joe Zuntz10 
TL;DR: In this article, the authors measured the weak lensing shear around galaxy troughs, i.e., the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey.
Abstract: We measure the weak lensing shear around galaxy troughs, i.e. the radial alignment of background galaxies relative to underdensities in projections of the foreground galaxy field over a wide range of redshift in Science Verification data from the Dark Energy Survey. Our detection of the shear signal is highly significant (10σ–15σ for the smallest angular scales) for troughs with the redshift range z ∈ [0.2, 0.5] of the projected galaxy field and angular diameters of 10 arcmin…1°. These measurements probe the connection between the galaxy, matter density, and convergence fields. By assuming galaxies are biased tracers of the matter density with Poissonian noise, we find agreement of our measurements with predictions in a fiducial Λ cold dark matter model. The prediction for the lensing signal on large trough scales is virtually independent of the details of the underlying model for the connection of galaxies and matter. Our comparison of the shear around troughs with that around cylinders with large galaxy counts is consistent with a symmetry between galaxy and matter over- and underdensities. In addition, we measure the two-point angular correlation of troughs with galaxies which, in contrast to the lensing signal, is sensitive to galaxy bias on all scales. The lensing signal of troughs and their clustering with galaxies is therefore a promising probe of the statistical properties of matter underdensities and their connection to the galaxy field.

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy1  +1619 moreInstitutions (223)
TL;DR: Abbott et al. as mentioned in this paper compared the four probability sky maps produced for the gravitational-wave transient GW150914, and provided additional details of the EM follow-up observations that were performed in the different bands.
Abstract: This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.

Journal ArticleDOI
Eric J. Baxter1, Joseph Clampitt1, Tommaso Giannantonio2, Scott Dodelson3, Scott Dodelson4, Bhuvnesh Jain1, Dragan Huterer5, Lindsey Bleem4, Lindsey Bleem6, T. M. Crawford4, George Efstathiou2, Pablo Fosalba7, Donnacha Kirk8, J. Kwan1, C. Sánchez9, K. T. Story10, Michael Troxel11, T. M. C. Abbott, F. B. Abdalla8, F. B. Abdalla12, Robert Armstrong13, A. Benoit-Lévy14, A. Benoit-Lévy8, Bradford Benson4, Bradford Benson3, Gary Bernstein1, R. A. Bernstein15, E. Bertin14, David Brooks8, John E. Carlstrom4, A. Carnero Rosell, M. Carrasco Kind16, M. Carrasco Kind17, J. Carretero7, J. Carretero9, R. Chown18, Martin Crocce7, Carlos E. Cunha10, L. N. da Costa, Shantanu Desai19, H. T. Diehl3, J. P. Dietrich19, Peter Doel8, August E. Evrard5, A. Fausti Neto, B. Flaugher3, Josh Frieman4, Josh Frieman3, Daniel Gruen10, Daniel Gruen20, Robert A. Gruendl16, Robert A. Gruendl17, G. Gutierrez3, T. de Haan21, T. de Haan18, Gilbert Holder18, K. Honscheid22, Z. Hou4, David J. James, Kyler Kuehn23, N. Kuropatkin3, Marcos Lima24, M. March1, Jennifer L. Marshall25, P. Martini22, Peter Melchior13, C. J. Miller5, Ramon Miquel26, Ramon Miquel9, Joseph J. Mohr27, Brian Nord3, Y. Omori18, A. A. Plazas28, Christian L. Reichardt29, A. K. Romer30, Eli S. Rykoff20, Eli S. Rykoff10, E. J. Sanchez, I. Sevilla-Noarbe16, E. Sheldon31, R. C. Smith, Marcelle Soares-Santos3, Flavia Sobreira3, E. Suchyta1, Antony A. Stark32, M. E. C. Swanson17, Gregory Tarle5, Daniel Thomas33, Alistair R. Walker, Risa H. Wechsler10, Risa H. Wechsler20 
TL;DR: In this article, the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field was measured using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimetre-wave data from the 2500 sq. deg. South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey.
Abstract: We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimetre-wave data from the 2500 sq. deg. South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy-lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoured Lambda cold dark matter cosmological model. It also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.

Journal ArticleDOI
TL;DR: In this paper, the authors used simulated galaxy surveys to study how galaxy membership in redMaPPer clusters maps to the underlying halo population, and the accuracy of a mean dynamical cluster mass, derived from stacked pairwise spectroscopy of clusters with richness.
Abstract: We use simulated galaxy surveys to study: i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and ii) the accuracy of a mean dynamical cluster mass, $M_\sigma(\lambda)$, derived from stacked pairwise spectroscopy of clusters with richness $\lambda$. Using $\sim\! 130,000$ galaxy pairs patterned after the SDSS redMaPPer cluster sample study of Rozo et al. (2015 RMIV), we show that the pairwise velocity PDF of central--satellite pairs with $m_i < 19$ in the simulation matches the form seen in RMIV. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes $\sim 60\%$ of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. (2008) to the velocity normalization matches, to within a few percent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with mis-centering and galaxy velocity bias corrections, to estimate the log-mean matched halo mass at $z=0.2$ of SDSS redMaPPer clusters. Employing the velocity bias constraints of Guo et al. (2015), we find $\langle \ln(M_{200c})|\lambda \rangle = \ln(M_{30}) + \alpha_m \ln(\lambda/30)$ with $M_{30} = 1.56 \pm 0.35 \times 10^{14} M_\odot$ and $\alpha_m = 1.31 \pm 0.06_{stat} \pm 0.13_{sys}$. Systematic uncertainty in the velocity bias of satellite galaxies overwhelmingly dominates the error budget.

Journal ArticleDOI
Donnacha Kirk1, Y. Omori2, A. Benoit-Lévy, R. Cawthon3, Chihway Chang4, P. Larsen5, Adam Amara4, David Bacon6, T. M. Crawford3, Scott Dodelson3, Scott Dodelson7, Pablo Fosalba, Tommaso Giannantonio5, Gilbert Holder2, Bhuvnesh Jain8, T. Kacprzak4, Ofer Lahav1, Niall MacCrann9, Andrina Nicola4, Alexandre Refregier4, E. Sheldon10, K. T. Story3, Michael Troxel9, Joaquin Vieira11, Vinu Vikram12, Joe Zuntz9, T. M. C. Abbott, F. B. Abdalla13, F. B. Abdalla1, Matthew R. Becker10, Bradford Benson3, Bradford Benson7, Gary Bernstein8, R. A. Bernstein14, Lindsey Bleem12, C. Bonnett, Sarah Bridle9, David Brooks1, E. Buckley-Geer7, D. L. Burke10, Diego Capozzi6, John E. Carlstrom3, A. Carnero Rosell, M. Carrasco Kind11, J. Carretero, Martin Crocce, Carlos E. Cunha10, C. B. D'Andrea6, C. B. D'Andrea15, L. N. da Costa, Shantanu Desai16, H. T. Diehl7, J. P. Dietrich16, Peter Doel1, Tim Eifler8, Tim Eifler17, August E. Evrard18, B. Flaugher7, Josh Frieman7, D. W. Gerdes18, Daniel A. Goldstein19, Daniel A. Goldstein20, Daniel Gruen, Robert A. Gruendl11, K. Honscheid21, David J. James, M. Jarvis8, Steve Kent7, Kyler Kuehn22, N. Kuropatkin7, Marcos Lima23, M. March8, P. Martini21, Peter Melchior24, C. J. Miller18, Ramon Miquel, Robert C. Nichol6, R. L. C. Ogando, A. A. Plazas17, Christian L. Reichardt25, A. Roodman10, Eduardo Rozo26, Eli S. Rykoff10, M. Sako8, E. J. Sanchez, V. Scarpine7, Michael Schubnell18, I. Sevilla-Noarbe, G. Simard2, R. C. Smith, Marcelle Soares-Santos7, Flavia Sobreira27, E. Suchyta8, M. E. C. Swanson11, Gregory Tarle18, Daniel Thomas6, Risa H. Wechsler10, Jochen Weller28 
TL;DR: In this paper, the authors measured the cross-correlation between weak lensing of galaxy images and the cosmic microwave background (CMB) using galaxy shape measurements from 139 deg(2) of the DES Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck.
Abstract: We measure the cross-correlation between weak lensing of galaxy images and of the cosmic microwave background (CMB). The effects of gravitational lensing on different sources will be correlated if the lensing is caused by the same mass fluctuations. We use galaxy shape measurements from 139 deg(2) of the Dark Energy Survey (DES) Science Verification data and overlapping CMB lensing from the South Pole Telescope (SPT) and Planck. The DES source galaxies have a median redshift of z(med) similar to 0.7, while the CMB lensing kernel is broad and peaks at z similar to 2. The resulting cross-correlation is maximally sensitive to mass fluctuations at z similar to 0.44. Assuming the Planck 2015 best-fitting cosmology, the amplitude of the DESxSPT cross-power is found to be A(SPT) = 0.88 +/- 0.30 and that from DESxPlanck to be A(Planck) = 0.86 +/- 0.39, where A = 1 corresponds to the theoretical prediction. These are consistent with the expected signal and correspond to significances of 2.9 sigma and 2.2 sigma, respectively. We demonstrate that our results are robust to a number of important systematic effects including the shear measurement method, estimator choice, photo-z uncertainty and CMB lensing systematics. We calculate a value of A = 1.08 +/- 0.36 for DESxSPT when we correct the observations with a simple intrinsic alignment model. With three measurements of this cross-correlation now existing in the literature, there is not yet reliable evidence for any deviation from the expected LCDM level of cross-correlation. We provide forecasts for the expected signal-to-noise ratio of the combination of the five-year DES survey and SPT-3G.

Journal ArticleDOI
Yanming Zhang1, C. J. Miller1, Timothy A. McKay1, P. Rooney2, August E. Evrard1, A. K. Romer2, R. Perfecto3, J. Song4, Shantanu Desai5, Joseph J. Mohr5, H. Wilcox6, A. Bermeo-Hernandez2, Tesla E. Jeltema7, D. L. Hollowood7, David Bacon6, Diego Capozzi6, Chris A. Collins8, R. Das1, D. W. Gerdes1, C. Hennig5, Matt Hilton9, Ben Hoyle5, Scott T. Kay10, Andrew R. Liddle11, Robert G. Mann11, Nicola Mehrtens12, Robert C. Nichol6, Casey Papovich12, Martin Sahlén13, Marcelle Soares-Santos14, John P. Stott13, Pedro T. P. Viana15, T. M. C. Abbott, F. B. Abdalla16, F. B. Abdalla17, M. Banerji18, A. H. Bauer19, A. Benoit-Lévy17, E. Bertin20, David Brooks17, E. Buckley-Geer14, D. L. Burke21, D. L. Burke22, A. Carnero Rosell, F. J. Castander19, H. T. Diehl14, Peter Doel17, Carlos E. Cunha21, Tim Eifler23, Tim Eifler24, A. Fausti Neto, E. Fernandez25, B. Flaugher14, Pablo Fosalba19, Joshua A. Frieman14, Joshua A. Frieman26, Enrique Gaztanaga19, Daniel Gruen5, Daniel Gruen27, Robert A. Gruendl28, K. Honscheid29, David J. James, Kyler Kuehn30, Nikolay Kuropatkin14, Ofer Lahav17, M. A. G. Maia, Martin Makler, Jennifer L. Marshall12, Paul Martini29, Ramon Miquel25, R. L. C. Ogando, A. A. Plazas23, A. A. Plazas31, A. Roodman22, A. Roodman21, Eli S. Rykoff22, Eli S. Rykoff21, M. Sako24, E. J. Sanchez, V. Scarpine14, Michael Schubnell1, I. Sevilla28, Robert Connon Smith, Flavia Sobreira14, E. Suchyta29, M. E. C. Swanson28, Gregory Tarle1, J. J. Thaler28, Douglas L. Tucker14, Vinu Vikram32, L. N. da Costa 
TL;DR: In this article, the stellar mass growth of bright central galaxies (BCGs) since redshift z = 1.2 was studied and compared with the expectation in a semi-analytical model applied to the Millennium Simulation.
Abstract: Using the science verification data of the Dark Energy Survey for a new sample of 106 X-ray selected clusters and groups, we study the stellar mass growth of bright central galaxies (BCGs) since redshift z ~ 1.2. Compared with the expectation in a semi-analytical model applied to the Millennium Simulation, the observed BCGs become under-massive/under-luminous with decreasing redshift. We incorporate the uncertainties associated with cluster mass, redshift, and BCG stellar mass measurements into an analysis of a redshift-dependent BCG-cluster mass relation, {m}*∝ ({M}200}/{1.5×{10}14{M}s}) 0.24+/-0.08(1+z)-0.19+/- 0.34, and compare the observed relation to the model prediction. We estimate the average growth rate since z = 1.0 for BCGs hosted by clusters of M200,z = 1013.8 Ms at z = 1.0: m*,BCG appears to have grown by 0.13 ± 0.11 dex, in tension at the ˜2.5sigma significance level with the 0.40 dex growth rate expected from the semi-analytic model. We show that the build-up of extended intracluster light after z = 1.0 may alleviate this tension in BCG growth rates.

Journal ArticleDOI
TL;DR: Alfred P. Sloan Foundation, US Department of Energy Office of Science; Center for High Performance Computing at the University of Utah; Brazilian Participation Group, Carnegie Institution for Science; Carnegie Mellon University; Chilean Participation Group; French Participation Group and Harvard-Smithsonian Center for Astrophysics; Instituto de Astrofisica de Canarias; Johns Hopkins University; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo; Lawrence Berkeley National Laboratory; Leibniz Institut fur Astrophysik Potsdam (A
Abstract: Alfred P. Sloan Foundation; US Department of Energy Office of Science; Center for High-Performance Computing at the University of Utah; Brazilian Participation Group; Carnegie Institution for Science; Carnegie Mellon University; Chilean Participation Group; French Participation Group; Harvard-Smithsonian Center for Astrophysics; Instituto de Astrofisica de Canarias; Johns Hopkins University; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo; Lawrence Berkeley National Laboratory; Leibniz Institut fur Astrophysik Potsdam (AIP); Max-Planck-Institut fur Astronomie (MPIA Heidelberg); Max-Planck-Institut fur Astrophysik (MPA Garching); Max-Planck-Institut fur Extraterrestrische Physik (MPE); National Astronomical Observatory of China; New Mexico State University; New York University; University of Notre Dame; Observatario Nacional/MCTI; Ohio State University; Pennsylvania State University; Shanghai Astronomical Observatory; United Kingdom Participation Group; Universidad Nacional Autonoma de Mexico; University of Arizona; University of Colorado Boulder; University of Oxford; University of Portsmouth; University of Utah; University of Virginia; University of Washington; University of Wisconsin; Vanderbilt University; Yale University; German BMWI through the Verbundforschung [50 OR 1506]; National Science Foundation

Journal ArticleDOI
Marcelle Soares-Santos1, Richard Kessler, Edo Berger2, J. Annis1, D. Brout3, E. Buckley-Geer1, H. S. Chen, Philip S. Cowperthwaite2, H. T. Diehl1, Zoheyr Doctor, Alex Drlica-Wagner1, Ben Farr, D. A. Finley1, B. Flaugher1, R. J. Foley4, Joshua A. Frieman1, Robert A. Gruendl4, K. Herner1, Daniel E. Holz, Huan Lin1, John Marriner1, Eric H. Neilsen1, Armin Rest5, Masao Sako3, Daniel Scolnic, Flavia Sobreira6, Alistair R. Walker, William Wester1, Brian Yanny1, T. M. C. Abbott, F. B. Abdalla7, F. B. Abdalla8, S. Allam1, Robert Armstrong9, M. Banerji10, A. Benoit-Lévy11, A. Benoit-Lévy7, R. A. Bernstein12, E. Bertin11, Duncan A. Brown13, D. L. Burke14, Diego Capozzi15, A. Carnero Rosell, M. Carrasco Kind4, J. Carretero, Francisco J. Castander, S. B. Cenko16, S. B. Cenko17, Ryan Chornock18, Martin Crocce, C. B. D'Andrea19, C. B. D'Andrea15, L. N. da Costa, Shantanu Desai20, J. P. Dietrich20, Maria R. Drout2, Tim Eifler3, Tim Eifler21, J. Estrada1, August E. Evrard22, Stephen Fairhurst23, E. Fernandez, J. A. Fischer3, Wen-fai Fong24, Pablo Fosalba, Derek B. Fox25, Chris L. Fryer26, Juan Garcia-Bellido, Enrique Gaztanaga, D. W. Gerdes22, Daniel A. Goldstein27, Daniel A. Goldstein28, Daniel Gruen14, G. Gutierrez1, K. Honscheid29, David J. James, I. Karliner4, Daniel Kasen28, Daniel Kasen27, Stephen M. Kent1, Nikolay Kuropatkin1, Kyler Kuehn30, Ofer Lahav7, Tenglin Li31, Marcos Lima32, Marcio A. G. Maia, Raffaella Margutti33, Paul Martini29, Thomas Matheson34, Richard G. McMahon10, Brian D. Metzger35, Christopher J. Miller22, Ramon Miquel, Joseph J. Mohr35, Joseph J. Mohr20, Robert C. Nichol15, Brian Nord1, Ricardo L. C. Ogando, John Peoples1, A. A. Plazas21, Eliot Quataert28, A. K. Romer36, A. Roodman14, Eli S. Rykoff14, E. J. Sanchez, V. Scarpine1, Rafe Schindler14, M. S. Schubnell22, I. Sevilla-Noarbe4, Erin S. Sheldon37, Mathew Smith19, Nathan Smith24, R. C. Smith, Albert Stebbins1, P. J. Sutton23, M. E. C. Swanson4, Gregory Tarle22, Jon J Thaler4, R. C. Thomas27, D. L. Tucker1, V. Vikram38, Risa H. Wechsler14, Jochen Weller35, Jochen Weller20 
TL;DR: In this article, a deep search for an optical counterpart to the GW150914, the first trigger from the Advanced LIGO gravitational wave detectors, was conducted using the DECam.
Abstract: We report initial results of a deep search for an optical counterpart to the gravitational wave event GW150914, the first trigger from the Advanced LIGO gravitational wave detectors. We used the Dark Energy Camera (DECam) to image a 102 deg$^2$ area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in i and z bands at 4-5, 7, and 24 days after the trigger. The median $5\sigma$ point-source limiting magnitudes of our search images are i=22.5 and z=21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg$^{2}$, corresponding to 12% total probability in the initial map and 3% of the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i= 21.5,21.1,20.1 for object colors (i-z)=1,0,-1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.

Journal ArticleDOI
B. P. Abbott, R. Abbott, T. D. Abbott, Matthew Abernathy  +1536 moreInstitutions (2)
TL;DR: In this paper, the authors summarize past electromagnetic follow-up efforts as well as the organization and policy of the current EM followup program and compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow up observations that were performed in the different bands.
Abstract: This Supplement provides supporting material for arXiv:1602.08492 . We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.