scispace - formally typeset
P

Paul Fulda

Researcher at University of Florida

Publications -  83
Citations -  22980

Paul Fulda is an academic researcher from University of Florida. The author has contributed to research in topics: Gravitational wave & LIGO. The author has an hindex of 35, co-authored 83 publications receiving 18674 citations. Previous affiliations of Paul Fulda include University of Birmingham & Goddard Space Flight Center.

Papers
More filters
Journal ArticleDOI

Observation of Gravitational Waves from a Binary Black Hole Merger

B. P. Abbott, +1011 more
TL;DR: This is the first direct detection of gravitational waves and the first observation of a binary black hole merger, and these observations demonstrate the existence of binary stellar-mass black hole systems.
Journal ArticleDOI

GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

B. P. Abbott, +1065 more
TL;DR: The magnitude of modifications to the gravitational-wave dispersion relation is constrain, the graviton mass is bound to m_{g}≤7.7×10^{-23} eV/c^{2} and null tests of general relativity are performed, finding that GW170104 is consistent with general relativity.
Journal ArticleDOI

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

B. P. Abbott, +1148 more
- 04 Sep 2019 - 
TL;DR: In this paper, the authors presented the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma during the first and second observing runs of the advanced GW detector network.
Journal ArticleDOI

The Einstein Telescope: a third-generation gravitational wave observatory

M. Punturo, +134 more
TL;DR: The third-generation ground-based observatory Einstein Telescope (ET) project as discussed by the authors is currently in its design study phase, and it can be seen as the first step in this direction.
Journal ArticleDOI

Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors

J. Abadie, +722 more
TL;DR: In this paper, Kalogera et al. presented an up-to-date summary of the rates for all types of compact binary coalescence sources detectable by the initial and advanced versions of the ground-based gravitational-wave detectors LIGO and Virgo.