scispace - formally typeset
Search or ask a question
Institution

Donghua University

EducationShanghai, China
About: Donghua University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Fiber & Nanofiber. The organization has 21155 authors who have published 21841 publications receiving 393091 citations. The organization is also known as: Dōnghuá Dàxué & China Textile University.
Topics: Fiber, Nanofiber, Membrane, Electrospinning, Catalysis


Papers
More filters
Journal ArticleDOI
TL;DR: It has been demonstrated by the rigorous cross-validation and from five different measuring angles that iATC-mHyb is remarkably superior to the best existing predictor in identifying the ATC classes for drug compounds.
Abstract: Recommended by the World Health Organization (WHO), drug compounds have been classified into 14 main ATC (Anatomical Therapeutic Chemical) classes according to their therapeutic and chemical characteristics. Given an uncharacterized compound, can we develop a computational method to fast identify which ATC class or classes it belongs to? The information thus obtained will timely help adjusting our focus and selection, significantly speeding up the drug development process. But this problem is by no means an easy one since some drug compounds may belong to two or more than two ATC classes. To address this problem, using the DO (Drug Ontology) approach based on the ChEBI (Chemical Entities of Biological Interest) database, we developed a predictor called iATC-mDO. Subsequently, hybridizing it with an existing drug ATC classifier, we constructed a predictor called iATC-mHyb. It has been demonstrated by the rigorous cross-validation and from five different measuring angles that iATC-mHyb is remarkably superior to the best existing predictor in identifying the ATC classes for drug compounds. To convenience most experimental scientists, a user-friendly web-server for iATC-mHyd has been established at http://www.jci-bioinfo.cn/iATC-mHyb, by which users can easily get their desired results without the need to go through the complicated mathematical equations involved.

116 citations

Journal ArticleDOI
TL;DR: It was shown that waste fiber sludge is a suitable raw material for production of bacterial cellulose and enzymes through sequential fermentation and affords a possibility to combine production of two high value-added products using residual streams from pulp mills and biorefineries.
Abstract: Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated. Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar. It was shown that waste fiber sludge is a suitable raw material for production of bacterial cellulose and enzymes through sequential fermentation. The concept studied offers efficient utilization of the various components in fiber sludge hydrolysates and affords a possibility to combine production of two high value-added products using residual streams from pulp mills and biorefineries. Cellulase produced in this manner could tentatively be used to hydrolyze fresh fiber sludge to obtain medium suitable for production of BC in the same biorefinery.

116 citations

Journal ArticleDOI
Jianhua Yan1, Ying Wang1, Yuanyuan Zhang1, Shuhui Xia1, Jianyong Yu1, Bin Ding1 
TL;DR: In this paper, a carbon-based bifunctional catalyst of magnetic catalytic nanocages that can direct enhance the oxygen catalytic activity by simply applying a moderate (350 mT) magnetic field is reported.
Abstract: Designing stable and efficient electrocatalysts for both oxygen reduction and evolution reactions (ORR/OER) at low-cost is challenging. Here, a carbon-based bifunctional catalyst of magnetic catalytic nanocages that can direct enhance the oxygen catalytic activity by simply applying a moderate (350 mT) magnetic field is reported. The catalysts, with high porosity of 90% and conductivity of 905 S m-1 , are created by in situ doping metallic cobalt nanodots (≈10 nm) into macroporous carbon nanofibers with a facile electrospinning method. An external magnetic field makes the cobalt magnetized into nanomagnets with high spin polarization, which promote the adsorption of oxygen-intermediates and electron transfer, significantly improving the catalytic efficiency. Impressively, the half wave-potential is increased by 20 mV for ORR, and the overpotential at 10 mA cm-2 is decreased by 15 mV for OER. Compared with the commercial Pt/C+IrO2 catalysts, the magnetic catalyzed Zn-air batteries deliver 2.5-fold of capacities and exhibit much longer durability over 155 h. The findings point out a very promising strategy of using electromagnetic induction to boost oxygen catalytic activity.

116 citations

Journal ArticleDOI
TL;DR: After four runs of Cr(VI) removal, it was found that U1T3 exhibited preferable reusability and water stability and the probable reaction mechanism was proposed and verified by active species capture experiments, electron spin resonance determination and electrochemical analyses.

116 citations

Journal ArticleDOI
01 Aug 2020
TL;DR: Wang et al. as discussed by the authors reviewed wound dressing materials which are capable of meeting the demands of accelerating wound closure and promoting wound healing process and emphasized on electrospun nanofibrous materials for wound dressing.
Abstract: Wound dressing materials which are capable of meeting the demands of accelerating wound closure and promoting wound healing process have being highly desired. Electrospun nanofibrous materials show great application potentials for wound healing owing to relatively large surface area, better mimicry of native extracellular matrix, adjustable waterproofness and breathability, and programmable drug delivery process. In this review article, we begin with a discussion of wound healing process and current commercial wound dressing materials. Then, we emphasize on electrospun nanofibrous materials for wound dressing, covering the efforts for controlling fiber alignment and morphology, constructing 3D scaffolds, developing waterproof-breathable membrane, governing drug delivery performance, and regulating stem cell behavior. Finally, we finish with challenges and future prospects of electrospun nanofibrous materials for wound dressings.

116 citations


Authors

Showing all 21321 results

NameH-indexPapersCitations
Dongyuan Zhao160872106451
Xiang Zhang1541733117576
Seeram Ramakrishna147155299284
Kuo-Chen Chou14348757711
Shuai Liu129109580823
Chao Zhang127311984711
Tao Zhang123277283866
Zidong Wang12291450717
Xinchen Wang12034965072
Zhenyu Zhang118116764887
Benjamin S. Hsiao10860241071
Qian Wang108214865557
Jian Zhang107306469715
Yan Zhang107241057758
Richard B. Kaner10655766862
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

89% related

Hunan University
44.1K papers, 863.1K citations

89% related

Soochow University (Suzhou)
56.5K papers, 1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022422
20212,466
20202,190
20192,003
20181,605