scispace - formally typeset
Search or ask a question
Institution

Donghua University

EducationShanghai, China
About: Donghua University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Fiber & Nanofiber. The organization has 21155 authors who have published 21841 publications receiving 393091 citations. The organization is also known as: Dōnghuá Dàxué & China Textile University.
Topics: Fiber, Nanofiber, Membrane, Electrospinning, Catalysis


Papers
More filters
Journal ArticleDOI
TL;DR: Electrospinning can be taken to prepare new generation SDs with structural characteristics that enhancing absorbance of poorly soluble drugs, and also exhibited a much faster dissolution rate than pure FA particles.

111 citations

Journal ArticleDOI
Bo Fang1, Li Peng1, Zhen Xu1, Chao Gao1, Chao Gao2 
22 Apr 2015-ACS Nano
TL;DR: A wet-spinning strategy to achieve continuous all-inorganic fibers of montmorillonite nanoplatelets by incorporation of a graphene oxide (GO) liquid crystal (LC) template at a rate of 9 cm/s is developed, and the templating role of GO LC is confirmed by in situ confocal laser scanning microscopy and polarized optical microscopy inspections.
Abstract: All-inorganic fibers composed of neat 2D crystals possessing fascinating performance (e.g., alternately stacking layers, high mechanical strength, favorable electrical conductivity, and fire-resistance) are discussed in detail. We developed a wet-spinning assmebly strategy to achieve continuous all-inorganic fibers of montmorillonite (MMT) nanoplatelets by incorporation of a graphene oxide (GO) liquid crystal (LC) template at a rate of 9 cm/s, and the templating role of GO LC is confirmed by in situ confocal laser scanning microscopy and polarized optical microscopy inspections. After protofibers underwent thermal reduction, the obtained binary complex fibers composed of neat 2D crystals integrate the outstanding fire-retardance of MMT nanoplatelets and the excellent conductivity of graphene nanosheets. High-resolution transmission electron microscopy and scanning electron microscope observations reveal the microstructures of fibers with compactly stacking layers. MMT-graphene fibers show increaing tensile strengths (88-270 MPa) and electrical conductivities (130-10500 S/m) with increasing graphene fraction. MMT-graphene (10/90) fibers are used as fire-resistant (bearing temperature in air: 600-700 °C), lightweight (ρ < 1.62 g/cm(3)) conductors (conductivity: up to 1.04 × 10(4) S/m) in view of their superior performance in high-temperature air beyond commercial T700 carbon fibers. We attribute the fire-resistance of MMT-graphene fibers to the armor-like protection of MMT layers, which could shield graphene layers from the action of oxidative etching. The composite fibers worked well as fire-resistant conductors when being heated to glowing red by an alcohol lamp. Our GO LC-templating wet-spinning strategy may also inspire the continuous assembly of other layered crystals into high-performance composite fibers.

111 citations

Journal ArticleDOI
TL;DR: In this paper, a review of universal strategies for preparing high-performance electrospun AFMs (EAFMs) are concluded, involving the construction of structures and the enhancement of electrostatic effect.

111 citations

Journal ArticleDOI
01 Sep 2012-Carbon
TL;DR: In this paper, a noninvasive approach is used to fabricate electronically conductive and flexible polymer fibers by fixing carbon nanotube (CNT) networks as a thin layer on thermoplastic polyurethane (TPU) multifilaments.

111 citations

Journal ArticleDOI
TL;DR: The aim here is to answer the question: how much perturbation can a given asymptotically bounded hybrid SDDE tolerate so that its perturbed system remains asymptonically bounded?
Abstract: One of the important issues in the study of hybrid stochastic differential delay equations (SDDEs) is the automatic control, with consequent emphasis being placed on the asymptotic analysis of stability and boundedness. In the study of asymptotic properties, the robust stability has received a great deal of attention. The theory of robust stability shows how much perturbation a given stable hybrid SDDE can tolerate so that its perturbed system remains stable. Almost all results so far on the robust stability require that the underlying SDDEs be either linear or nonlinear with linear growth condition. However, little is known on the robust stability of nonlinear hybrid SDDEs without the linear growth condition, which is one of the key topics in this paper. The other key topic is the robust boundedness. The aim here is to answer the question: how much perturbation can a given asymptotically bounded hybrid SDDE tolerate so that its perturbed system remains asymptotically bounded?

111 citations


Authors

Showing all 21321 results

NameH-indexPapersCitations
Dongyuan Zhao160872106451
Xiang Zhang1541733117576
Seeram Ramakrishna147155299284
Kuo-Chen Chou14348757711
Shuai Liu129109580823
Chao Zhang127311984711
Tao Zhang123277283866
Zidong Wang12291450717
Xinchen Wang12034965072
Zhenyu Zhang118116764887
Benjamin S. Hsiao10860241071
Qian Wang108214865557
Jian Zhang107306469715
Yan Zhang107241057758
Richard B. Kaner10655766862
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

89% related

Hunan University
44.1K papers, 863.1K citations

89% related

Soochow University (Suzhou)
56.5K papers, 1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022422
20212,466
20202,190
20192,003
20181,605