scispace - formally typeset
Search or ask a question
Institution

Donghua University

EducationShanghai, China
About: Donghua University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Fiber & Nanofiber. The organization has 21155 authors who have published 21841 publications receiving 393091 citations. The organization is also known as: Dōnghuá Dàxué & China Textile University.
Topics: Fiber, Nanofiber, Membrane, Electrospinning, Catalysis


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a new method, called Exp-function method, is proposed to seek solitary solutions, periodic solutions and compacton-like solutions of nonlinear differential equations, and the modified KdV equation and Dodd-Bullough-Mikhailov equation are chosen to illustrate the effectiveness and convenience of the suggested method.
Abstract: In this paper, a new method, called Exp-function method, is proposed to seek solitary solutions, periodic solutions and compacton-like solutions of nonlinear differential equations. The modified KdV equation and Dodd–Bullough–Mikhailov equation are chosen to illustrate the effectiveness and convenience of the suggested method.

1,718 citations

Journal ArticleDOI
TL;DR: An ambient-driven actuator that takes advantage of inherent nanoscale molecular channels within a commercial perfluorosulfonic acid ionomer (PFSA) film, fabricated by simple solution processing to realize a rapid response, self-adaptive, and exceptionally stable actuation.
Abstract: The ability to achieve simultaneous intrinsic deformation with fast response in commercially available materials that can safely contact skin continues to be an unresolved challenge for artificial actuating materials. Rather than using a microporous structure, here we show an ambient-driven actuator that takes advantage of inherent nanoscale molecular channels within a commercial perfluorosulfonic acid ionomer (PFSA) film, fabricated by simple solution processing to realize a rapid response, self-adaptive, and exceptionally stable actuation. Selective patterning of PFSA films on an inert soft substrate (polyethylene terephthalate film) facilitates the formation of a range of different geometries, including a 2D (two-dimensional) roll or 3D (three-dimensional) helical structure in response to vapor stimuli. Chemical modification of the surface allowed the development of a kirigami-inspired single-layer actuator for personal humidity and heat management through macroscale geometric design features, to afford a bilayer stimuli-responsive actuator with multicolor switching capability. Intrinsic deformation with fast response in commercially available materials that can safely contact skin continues to be a challenge for artificial actuating materials. Here the authors incorporate nanoscale molecular channels within perfluorosulfonic acid ionomer for self-adaptive and ambient-driven actuation.

1,395 citations

Journal ArticleDOI
TL;DR: In this article, a facial aqueous solution was used to extract fully exfoliated graphene nanosheets and polyvinyl alcohol (PVA) for the preparation of polymer nanocomposites.
Abstract: Graphene, flat carbon nanosheets, has generated huge activity in many areas of science and engineering due to its unprecedented physical and chemical properties. With the development of wide-scale applicability including facile synthesis and high yield, this exciting material is ready for its practical application in the preparation of polymer nanocomposites. Here we report that nanocomposites based on fully exfoliated graphene nanosheets and poly(vinyl alcohol) (PVA) are prepared via a facial aqueous solution. A significant enhancement of mechanical properties of the graphene/PVA composites is obtained at low graphene loading; that is, a 150% improvement of tensile strength and a nearly 10 times increase of Young’s modulus are achieved at a graphene loading of 1.8 vol %. The comparison between the experimental results and theoretical simulation for Young’s modulus indicates that the graphene nanosheets in polymer matrix are mostly dispersed randomly in the nanocomposite films.

1,308 citations

Journal ArticleDOI
Ji-Huan He1
TL;DR: In this article, the homotopy perturbation method is applied to the search for traveling wave solutions of nonlinear wave equations and some examples are given to illustrate the determination of the periodic solutions or the bifurcation curves of the nonlinear Wave equations.
Abstract: The homotopy perturbation method is applied to the search for traveling wave solutions of nonlinear wave equations. Some examples are given to illustrate the determination of the periodic solutions or the bifurcation curves of the nonlinear wave equations.

1,202 citations

Journal ArticleDOI
TL;DR: A novel swarm optimization approach, namely sparrow search algorithm (SSA), is proposed inspired by the group wisdom, foraging and anti-predation behaviours of sparrows, which shows that the proposed SSA is superior over GWO, PSO and GSA in terms of accuracy, convergence speed, stability and robustness.
Abstract: In this paper, a novel swarm optimization approach, namely sparrow search algorithm (SSA), is proposed inspired by the group wisdom, foraging and anti-predation behaviours of sparrows. Experiments ...

1,114 citations


Authors

Showing all 21321 results

NameH-indexPapersCitations
Dongyuan Zhao160872106451
Xiang Zhang1541733117576
Seeram Ramakrishna147155299284
Kuo-Chen Chou14348757711
Shuai Liu129109580823
Chao Zhang127311984711
Tao Zhang123277283866
Zidong Wang12291450717
Xinchen Wang12034965072
Zhenyu Zhang118116764887
Benjamin S. Hsiao10860241071
Qian Wang108214865557
Jian Zhang107306469715
Yan Zhang107241057758
Richard B. Kaner10655766862
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

89% related

Hunan University
44.1K papers, 863.1K citations

89% related

Soochow University (Suzhou)
56.5K papers, 1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022422
20212,466
20202,190
20192,003
20181,605