scispace - formally typeset
Search or ask a question
Institution

Donghua University

EducationShanghai, China
About: Donghua University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Fiber & Nanofiber. The organization has 21155 authors who have published 21841 publications receiving 393091 citations. The organization is also known as: Dōnghuá Dàxué & China Textile University.
Topics: Fiber, Nanofiber, Membrane, Electrospinning, Catalysis


Papers
More filters
Journal ArticleDOI
TL;DR: Aqueous mixture of NaOH/urea/thiourea/H2O at a 8/8/6.5 composition and pre-cooled at −10˚ C readily dissolved cellulose to produce stable solutions at relatively high concentrations as mentioned in this paper.

114 citations

Journal ArticleDOI
TL;DR: On the basis of combination of recurrent BP networks and wavelet analysis, a model is developed for more accurate forecasts of solar irradiance and the accuracy of the method is more satisfactory than that of the methods reported before.

114 citations

Journal ArticleDOI
TL;DR: In vitro flow cytometry data show that the LA-Au DENPs can be specifically uptaken by a model hepatocarcinoma cell line overexpressing asialoglycoprotein receptors through an active receptor-mediated targeting pathway, indicating a great promise to be used as a nanoprobe for targeted CT imaging of human hepatocellular carcinoma.
Abstract: Development of novel nanomaterial-based contrast agents for targeted computed tomography (CT) imaging of tumors still remains a great challenge. Here we describe a novel approach to fabricating lactobionic acid (LA)-modified dendrimer-entrapped gold nanoparticles (LA-Au DENPs) for in vitro and in vivo targeted CT imaging of human hepatocellular carcinoma. In this study, amine-terminated poly(amidoamine) dendrimers of generation 5 pre-modified with fluorescein isothiocyanate and poly(ethylene glycol)-linked LA were employed as templates to form Au nanoparticles. The remaining dendrimer terminal amines were subjected to an acetylation reaction to form LA-Au DENPs. The prepared LA-Au DENPs were characterized via different methods. Our results reveal that the multifunctional Au DENPs with a Au core size of 2.7 nm have good stability under different pH (5-8) and temperature (4-50 °C) conditions and in different aqueous media, and are noncytotoxic to normal cells but cytotoxic to the targeted hepatocarcinoma cells in the given concentration range. In vitro flow cytometry data show that the LA-Au DENPs can be specifically uptaken by a model hepatocarcinoma cell line overexpressing asialoglycoprotein receptors through an active receptor-mediated targeting pathway. Importantly, the LA-Au DENPs can be used as a highly effective nanoprobe for specific CT imaging of hepatocarcinoma cells in vitro and the xenoplanted tumor model in vivo. The developed LA-Au DENPs with X-ray attenuation property greater than clinically employed iodine-based CT contrast agents hold a great promise to be used as a nanoprobe for targeted CT imaging of human hepatocellular carcinoma.

114 citations

Journal ArticleDOI
01 Aug 2018-Small
TL;DR: This work demonstrates a feasible strategy to construct advanced metal sulfide-based free-standing electrodes by incorporating defect-rich structures using surface engineering principles.
Abstract: The use of free-standing carbon-based hybrids plays a crucial role to help fulfil ever-increasing energy storage demands, but is greatly hindered by the limited number of active sites for fast charge adsorption/desorption processes. Herein, an efficient strategy is demonstrated for making defect-rich bismuth sulfides in combination with surface nitrogen-doped carbon nanofibers (dr-Bi2 S3 /S-NCNF) as flexible free-standing electrodes for asymmetric supercapacitors. The dr-Bi2 S3 /S-NCNF composite exhibits superior electrochemical performances with an enhanced specific capacitance of 466 F g-1 at a discharge current density of 1 A g-1 . The high performance of dr-Bi2 S3 /S-NCNF electrodes originates from its hierarchical structure of nitrogen-doped carbon nanofibers with well-anchored defect-rich bismuth sulfides nanostructures. As modeled by density functional theory calculation, the dr-Bi2 S3 /S-NCNF electrodes exhibit a reduced OH- adsorption energy of -3.15 eV, compared with that (-3.06 eV) of defect-free bismuth sulfides/surface nitrogen-doped carbon nanofiber (df-Bi2 S3 /S-NCNF). An asymmetric supercapacitor is further fabricated by utilizing dr-Bi2 S3 /S-NCNF hybrid as the negative electrode and S-NCNF as the positive electrode. This composite exhibits a high energy density of 22.2 Wh kg-1 at a power density of 677.3 W kg-1 . This work demonstrates a feasible strategy to construct advanced metal sulfide-based free-standing electrodes by incorporating defect-rich structures using surface engineering principles.

114 citations

Journal ArticleDOI
10 Dec 2012-Langmuir
TL;DR: This work investigates the film deposition of dopamine mixed with a nonionic polymer onto silica substrates using X-ray photoelectron spectroscopy and quartz crystal microbalance and discovered the first material, namely, PVP, that can suppress PDA film assembly.
Abstract: Poly(dopamine) (PDA) coatings have recently attracted considerable interest for a variety of applications. Here, we investigate the film deposition of dopamine mixed with a nonionic polymer (i.e., poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA), and poly(N-vinyl pyrrolidone) (PVP)) onto silica substrates using X-ray photoelectron spectroscopy and quartz crystal microbalance. Furthermore, we assess the possibility of coating silica colloids to yield polymer capsules and liposomes with these mixtures. We found that mixed PDA/PEG and PDA/PVA films are deposited without the need for a covalent linker such as an amine or thiol. We also discovered the first material, namely, PVP, that can suppress PDA film assembly. These fundamental findings give further insight into PDA film properties and contribute to establish PDA as a widely applicable coating.

114 citations


Authors

Showing all 21321 results

NameH-indexPapersCitations
Dongyuan Zhao160872106451
Xiang Zhang1541733117576
Seeram Ramakrishna147155299284
Kuo-Chen Chou14348757711
Shuai Liu129109580823
Chao Zhang127311984711
Tao Zhang123277283866
Zidong Wang12291450717
Xinchen Wang12034965072
Zhenyu Zhang118116764887
Benjamin S. Hsiao10860241071
Qian Wang108214865557
Jian Zhang107306469715
Yan Zhang107241057758
Richard B. Kaner10655766862
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

89% related

Hunan University
44.1K papers, 863.1K citations

89% related

Soochow University (Suzhou)
56.5K papers, 1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022422
20212,466
20202,190
20192,003
20181,605