scispace - formally typeset
Search or ask a question
Institution

Donghua University

EducationShanghai, China
About: Donghua University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Fiber & Nanofiber. The organization has 21155 authors who have published 21841 publications receiving 393091 citations. The organization is also known as: Dōnghuá Dàxué & China Textile University.
Topics: Fiber, Nanofiber, Membrane, Electrospinning, Catalysis


Papers
More filters
Journal ArticleDOI
TL;DR: This study provides a new facile route for the generation of SO4(•-) and simultaneous removal of organic and inorganic pollutants.
Abstract: An efficient and green advanced oxidation process (i.e., photo-sulfite reaction) for the simultaneous oxidation of sulfite and organic pollutants in water is reported. The photo-sulfite system (UV–Fe(III)–sulfite) is based on the Fe-catalyzed sulfite oxidation and photochemistry of Fe(III) species. SO4•– and •OH radicals were identified in the photo-sulfite system with radical scavenging experiments using specific alcohols. This novel technology was consistently proven to be more favorable than the alternative Fe(III)–sulfite systems for the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) and other organic pollutants at all conditions tested. The reactivity of photo-sulfite system was sustained due to the spontaneous switch of photoactive species from Fe(III)–sulfito to Fe(III)–hydroxo complexes with the depletion of sulfite and the decrease in pH. In contrast, in the absence of light the performance of the Fe(III)–sulfite system was greatly diminished after the consumption of sulfite. The formation of t...

142 citations

Journal ArticleDOI
TL;DR: In this paper, a soft hydrogel based self-healing triboelectric nanogenerator (HS-TENG), which is highly deformable, and both mechanically and electrically selfhealable, has been successfully fabricated from a poly(vinyl alcohol)/agarose hyrogel.
Abstract: Self-healable soft conductors, which can withstand certain degrees of deformation and can recover from damage spontaneously, are essential for wearable applications. In this work, a soft hydrogel based self-healing triboelectric nanogenerator (HS-TENG), which is highly deformable, and both mechanically and electrically self-healable, has been successfully fabricated from a poly(vinyl alcohol)/agarose hydrogel. The incorporation of photothermally active polydopamine particles and multiwalled carbon nanotubes (MWCNTs) allows the HS-TENG to be physically self-healed in ∼1 min upon exposure to near-infrared (NIR) light. At the same time, the chemical self-healing of the HS-TENG can be triggered by water spraying at 25 °C when introducing water-active dynamic borate bonds into the hydrogel. The applicability of the HS-TENG as a soft energy device to harvest human motion energies has been demonstrated. By tapping the HS-TENG with various deformations, the rectified electricity can charge commercial LEDs with sustainable energy. Working in single-electrode mode, the electrical outputs of the HS-TENG in terms of short-circuit transferred charge (Qsc), open circuit voltage (Voc) and short-circuit current (Isc) reach ∼32 nC, ∼95 V and ∼1.5 μA, respectively, and remain stable even with 200% strain since the MWCNTs disperse evenly in the matrix and play the role of conductive fillers in the HS-TENG.

142 citations

Journal ArticleDOI
TL;DR: In this paper, a single capillary electrospinning-based ZnO hollow nanofibers was used to detect acetone in X-ray diffraction and selected area electron diffraction (SAED) images.
Abstract: Solid and hollow ZnO nanofibers were fabricated through a facile single capillary electrospinning. The samples have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). A comparative acetone sensing study between the two samples were also performed. The results indicate that the ZnO hollow nanofibers show improved response to acetone at 220 °C with good selectivity and stability, which is attributed to the 1D hollow nanostructure. Especially, the sensor can detect acetone down to 1 ppm with obvious response (7.1). The formation mechanism and acetone sensing mechanism of the ZnO hollow nanofibers were also discussed.

141 citations

Journal ArticleDOI
TL;DR: This work prepares mechanically and biologically skin-like materials (PSeD-U elastomers) by designing a unique physical and covalent hybrid crosslinking structure and demonstrates the cytocompatibility and biodegradability to achieve better integration with tissues.
Abstract: The bio-integrated electronics industry is booming and becoming more integrated with biological tissues. To successfully integrate with the soft tissues of the body (eg. skin), the material must possess many of the same properties including compliance, toughness, elasticity, and tear resistance. In this work, we prepare mechanically and biologically skin-like materials (PSeD-U elastomers) by designing a unique physical and covalent hybrid crosslinking structure. The introduction of an optimal amount of hydrogen bonds significantly strengthens the resultant elastomers with 11 times the toughness and 3 times the strength of covalent crosslinked PSeD elastomers, while maintaining a low modulus. Besides, the PSeD-U elastomers show nonlinear mechanical behavior similar to skins. Furthermore, PSeD-U elastomers demonstrate the cytocompatibility and biodegradability to achieve better integration with tissues. Finally, piezocapacitive pressure sensors are fabricated with high pressure sensitivity and rapid response to demonstrate the potential use of PSeD-U elastomers in bio-integrated electronics. Designing biodegradable and biocompatible polymers to mimic both mechanical and biological properties of skins for emerging electronic devices remains a challenge. Here, the authors propose PSeD-U skin-like elastomers with both mechanical and biological properties for bio-integrated electronics.

141 citations


Authors

Showing all 21321 results

NameH-indexPapersCitations
Dongyuan Zhao160872106451
Xiang Zhang1541733117576
Seeram Ramakrishna147155299284
Kuo-Chen Chou14348757711
Shuai Liu129109580823
Chao Zhang127311984711
Tao Zhang123277283866
Zidong Wang12291450717
Xinchen Wang12034965072
Zhenyu Zhang118116764887
Benjamin S. Hsiao10860241071
Qian Wang108214865557
Jian Zhang107306469715
Yan Zhang107241057758
Richard B. Kaner10655766862
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

89% related

Hunan University
44.1K papers, 863.1K citations

89% related

Soochow University (Suzhou)
56.5K papers, 1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022422
20212,466
20202,190
20192,003
20181,605