scispace - formally typeset
Search or ask a question
Institution

Donghua University

EducationShanghai, China
About: Donghua University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Fiber & Nanofiber. The organization has 21155 authors who have published 21841 publications receiving 393091 citations. The organization is also known as: Dōnghuá Dàxué & China Textile University.
Topics: Fiber, Nanofiber, Membrane, Electrospinning, Catalysis


Papers
More filters
Journal ArticleDOI
J.C. Cao1, S.H. Cao1
01 Dec 2006-Energy
TL;DR: In this paper, the data sequence of solar irradiance as samples is mapped into several time-frequency domains using wavelet transformation, and a recurrent back-propagation network is established for each domain.

164 citations

Journal ArticleDOI
TL;DR: By means of a time-dependent Lyapunov function and the comparison principle, several sufficient conditions are established under which nonlinear dynamical networks with heterogeneous impulsive effects are exponentially synchronized to a desired state.
Abstract: In this paper, the synchronization problem is investigated for a class of nonlinear delayed dynamical networks with heterogeneous impulsive effects. The intrinsic properties of heterogeneous impulses are that impulsive strengths are inhomogeneous in both time and space domains, i.e., the impulsive effect in each node is not only nonidentical from each other, but also time-varying at different impulsive instants. The purpose of the addressed problem is to derive synchronization criteria such that, the nonlinear delayed dynamical networks with heterogeneous impulses can be synchronized to a desired state. By means of a time-dependent Lyapunov function and the comparison principle, several sufficient conditions are established under which nonlinear dynamical networks with heterogeneous impulsive effects are exponentially synchronized to a desired state. An example is given to show the effectiveness of the proposed results.

164 citations

Journal ArticleDOI
TL;DR: This article tackles the recursive filtering problem for a class of stochastic nonlinear time-varying complex networks suffering from both the state saturations and the deception attacks, and designs a state-saturated recursive filter such that a certain upper bound is guaranteed on the filtering error covariance and is then minimized at each time instant.
Abstract: This article tackles the recursive filtering problem for a class of stochastic nonlinear time-varying complex networks (CNs) suffering from both the state saturations and the deception attacks. The nonlinear inner coupling and the state saturations are taken into account to characterize the nonlinear nature of CNs. From the defender’s perspective, the randomly occurring deception attack is governed by a set of Bernoulli binary distributed white sequence with a given probability. The objective of the addressed problem is to design a state-saturated recursive filter such that, in the simultaneous presence of the state saturations and the randomly occurring deception attacks, a certain upper bound is guaranteed on the filtering error covariance, and such an upper bound is then minimized at each time instant. By employing the induction method, an upper bound on the filtering error variance is first constructed in terms of the solutions to a set of matrix difference equations. Subsequently, the filter parameters are appropriately designed to minimize such an upper bound. Finally, a numerical simulation example is provided to demonstrate the feasibility and usefulness of the proposed filtering scheme.

164 citations

Journal ArticleDOI
TL;DR: In this paper, a facile method for fabricating fibers with micro-and nano-porous structure by electrospinning a ternary system of nonsolvent/solvent/poly( l -lactic acid) is presented.

164 citations

Journal ArticleDOI
TL;DR: Molybdenum oxide nanoribbons as a model of photothermal materials can efficiently convert the 980 nm wavelength laser energy into heat energy, and this localized hyperthermia produces the effective thermal ablation of cancer cells, meaning a potential photothermal material.
Abstract: The molybdenum oxide nanosheets have shown strong localized surface plasmon resonance (LSPR) absorption in the near-infrared (NIR) region. However, the long alky chains of ligands made them hydrophobic and less biocompatible. To meet the requirements of molybdenum based nanomaterials for use as a future photothermal therapy, a simple hydrothermal route has been developed for hydrophilic molybdenum oxide nanospheres and nanoribbons using a molybdenum precursor and poly(ethylene glycol) (PEG). First, molybdenum oxide nanomaterials prepared in the presence of PEG exhibit strong localized surface plasmon resonance (LSPR) absorption in near-infrared (NIR) region, compared with that of no PEG. Second, elevation of synthetic temperature leads to a gradual transformation of molybdenum oxide nanospheres into nanoribbons, entailing the evolution of an intense LSPR absorption in the NIR region. Third, as-prepared molybdenum oxide nanomaterials coated with PEG possess a hydrophilic property and thus can be directly used for biological applications without additional post treatments. Moreover, molybdenum oxide nanoribbons as a model of photothermal materials can efficiently convert the 980 nm wavelength laser energy into heat energy, and this localized hyperthermia produces the effective thermal ablation of cancer cells, meaning a potential photothermal material.

163 citations


Authors

Showing all 21321 results

NameH-indexPapersCitations
Dongyuan Zhao160872106451
Xiang Zhang1541733117576
Seeram Ramakrishna147155299284
Kuo-Chen Chou14348757711
Shuai Liu129109580823
Chao Zhang127311984711
Tao Zhang123277283866
Zidong Wang12291450717
Xinchen Wang12034965072
Zhenyu Zhang118116764887
Benjamin S. Hsiao10860241071
Qian Wang108214865557
Jian Zhang107306469715
Yan Zhang107241057758
Richard B. Kaner10655766862
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

93% related

Dalian University of Technology
71.9K papers, 1.1M citations

90% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

89% related

Hunan University
44.1K papers, 863.1K citations

89% related

Soochow University (Suzhou)
56.5K papers, 1M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202371
2022422
20212,466
20202,190
20192,003
20181,605