scispace - formally typeset
Search or ask a question
Institution

Jagiellonian University

EducationKrakow, Poland
About: Jagiellonian University is a education organization based out in Krakow, Poland. It is known for research contribution in the topics: Population & Catalysis. The organization has 17438 authors who have published 44092 publications receiving 862633 citations. The organization is also known as: Academia Cracoviensis & Akademia Krakowska.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed and comprehensive analysis of the experimental results that set the current world sensitivity limit on the magnitude of the electric dipole moment (EDM) of the neutron is presented.
Abstract: We present for the first time a detailed and comprehensive analysis of the experimental results that set the current world sensitivity limit on the magnitude of the electric dipole moment (EDM) of the neutron. We have extended and enhanced our earlier analysis to include recent developments in the understanding of the effects of gravity in depolarizing ultracold neutrons; an improved calculation of the spectrum of the neutrons; and conservative estimates of other possible systematic errors, which are also shown to be consistent with more recent measurements undertaken with the apparatus. We obtain a net result of dn=−0.21±1.82×10−26 e cm, which may be interpreted as a slightly revised upper limit on the magnitude of the EDM of 3.0×10−26 e cm (90% C.L.) or 3.6×10−26 e cm (95% C.L.).

492 citations

Journal ArticleDOI
Morad Aaboud, Georges Aad1, Brad Abbott2, Jalal Abdallah3  +2845 moreInstitutions (197)
TL;DR: This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton–proton collision data.
Abstract: During 2015 the ATLAS experiment recorded 3.8 fb(-1) of proton-proton collision data at a centre-of-mass energy of 13 TeV. The ATLAS trigger system is a crucial component of the experiment, respons ...

488 citations

Journal ArticleDOI
TL;DR: In this paper, the three-nucleon force at the next-to-next-leading order in chiral effective field theory was analyzed. But only the two-and three-and four-and five-and six-and seven-and eight-nule interactions were taken into account.
Abstract: We perform the first fully consistent analysis of $\mathrm{nd}$ scattering at next-to-next-to-leading order in chiral effective field theory including the corresponding three-nucleon force and extending our previous work, where only the two-nucleon interaction has been taken into account. The three-nucleon force appears first at this order in the chiral expansion and depends on two unknown parameters. These two parameters are determined from the triton binding energy and $\mathrm{nd}$ doublet scattering length. We find an improved description of various scattering observables in relation to the next-to-leading order results especially at moderate energies ${(E}_{\mathrm{lab}}=65\mathrm{MeV}).$ It is demonstrated that the long-standing ${A}_{y}$ problem in $\mathrm{nd}$ elastic scattering is still not solved by the leading 3NF, although some visible improvement is observed. We discuss possibilities of solving this puzzle. The predicted binding energy for the $\ensuremath{\alpha}$ particle agrees with the empirical value.

487 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present X-ray/γ-ray spectra of Cyg X-1 observed during the transition from the hard to the soft state and in the soft states by ASCA, RXTE and CGRO/OSSE in 1996 May and June.
Abstract: We present X-ray/γ-ray spectra of Cyg X-1 observed during the transition from the hard to the soft state and in the soft state by ASCA, RXTE and CGRO/OSSE in 1996 May and June. The spectra consist of a dominant soft component below ∼2 keV and a power-law-like continuum extending to at least ∼800 keV. We interpret them as emission from an optically thick, cold accretion disc and from an optically thin, non-thermal corona above the disc. A fraction f≳0.5 of total available power is dissipated in the corona. We model the soft component by multicolour blackbody disc emission taking into account the torque-free inner-boundary condition. If the disc extends down to the minimum stable orbit, the ASCARXTE data yield the most probable black hole mass of MX≈10 M⊙ and an accretion rate, , locating Cyg X-1 in the soft state in the upper part of the stable, gas-pressure-dominated, accretion-disc solution branch. The spectrum of the corona is well modelled by repeated Compton scattering of seed photons from the disc off electrons with a hybrid, thermal/non-thermal distribution. The electron distribution can be characterized by a Maxwellian with an equilibrium temperature of kTe∼30–50 keV, a Thomson optical depth of τ∼0.3 and a quasi-power-law tail. The compactness of the corona is 2≲lh≲7, and a presence of a significant population of electron–positron pairs is ruled out. We find strong signatures of Compton reflection from a cold and ionized medium, presumably an accretion disc, with an apparent reflector solid angle, Ω/2π∼0.5–0.7. The reflected continuum is accompanied by a broad iron Kα line.

486 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent theoretical work on two closely related issues: excitation of an isolated quantum condensed matter system driven adiabatically across a continuous quantum phase transition or a gapless phase and apparent relaxation of an excited system after a sudden quench of a parameter in its Hamiltonian.
Abstract: We review recent theoretical work on two closely related issues: excitation of an isolated quantum condensed matter system driven adiabatically across a continuous quantum phase transition or a gapless phase, and apparent relaxation of an excited system after a sudden quench of a parameter in its Hamiltonian. Accordingly, the review is divided into two parts. The first part revolves around a quantum version of the Kibble–Zurek mechanism including also phenomena that go beyond this simple paradigm. What they have in common is that excitation of a gapless many-body system scales with a power of the driving rate. The second part attempts a systematic presentation of recent results and conjectures on apparent relaxation of a pure state of an isolated quantum many-body system after its excitation by a sudden quench. This research is motivated in part by recent experimental developments in the physics of ultracold atoms with potential applications in the adiabatic quantum state preparation and quantum computation.

484 citations


Authors

Showing all 17729 results

NameH-indexPapersCitations
Roxana Mehran141137899398
Brad Abbott137156698604
M. Morii1341664102074
M. Franklin134158195304
John Huth131108785341
Wladyslaw Dabrowski12999079728
Rostislav Konoplich12881173790
Michel Vetterli12890176064
Francois Corriveau128102275729
Christoph Falk Anders12673468828
Tomasz Bulik12169886211
Elzbieta Richter-Was11879369127
S. H. Robertson116131158582
S. J. Chen116155962804
David M. Stern10727147461
Network Information
Related Institutions (5)
University of Tübingen
84.1K papers, 3M citations

90% related

University of Milan
139.7K papers, 4.6M citations

90% related

University of Turin
77.9K papers, 2.4M citations

89% related

University of Padua
114.8K papers, 3.6M citations

89% related

University of Vienna
95.8K papers, 2.9M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023162
2022510
20212,769
20202,777
20192,736
20182,735