scispace - formally typeset
Search or ask a question
Institution

Moscow Institute of Physics and Technology

EducationDolgoprudnyy, Russia
About: Moscow Institute of Physics and Technology is a education organization based out in Dolgoprudnyy, Russia. It is known for research contribution in the topics: Laser & Plasma. The organization has 8594 authors who have published 16968 publications receiving 246551 citations. The organization is also known as: MIPT & Moscow Institute of Physics and Technology (State University).


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used interferometric observations of 3C84 (NGC 1275) of the Perseus cluster to find a broad cylindrical jet with a transverse radius of ≳250'rg at only 350'rg from the core, which is ten times closer to the central engine than was possible in previous ground-based observations.
Abstract: Understanding the formation of relativistic jets in active galactic nuclei remains an elusive problem 1 . This is partly because observational tests of jet formation models suffer from the limited angular resolution of ground-based very-long-baseline interferometry that has thus far been able to probe the structure of the jet acceleration and collimation region in only two sources2,3. Here, we report observations of 3C84 (NGC 1275)—the central galaxy of the Perseus cluster—made with an interferometric array including the orbiting radio telescope of the RadioAstron 4 mission. The data transversely resolve the edge-brightened jet in 3C84 only 30 μas from the core, which is ten times closer to the central engine than was possible in previous ground-based observations 5 and allows us to measure the jet collimation profile from ~102 to ~104 gravitational radii (rg) from the black hole. The previously found 5 , almost cylindrical jet profile on scales larger than a few thousand rg is seen to continue at least down to a few hundred rg from the black hole, and we find a broad jet with a transverse radius of ≳250 rg at only 350 rg from the core. This implies that either the bright outer jet layer goes through a very rapid lateral expansion on scales ≲102 rg or it is launched from the accretion disk. Interferometric observations of 3C84 reveal a broad cylindrical jet a few hundred gravitational radii from the black hole, implying that the jet either undergoes a rapid lateral expansion on even smaller scales or is launched from the accretion disk.

110 citations

Journal ArticleDOI
TL;DR: A concept of active wave kinetics of cyclic systems and the function of random fibre laser is developed, generalizing the seminal linear model of Schawlow and Townes and results agree with the theory.
Abstract: Traditional wave kinetics describes the slow evolution of systems with many degrees of freedom to equilibrium via numerous weak non-linear interactions and fails for very important class of dissipative (active) optical systems with cyclic gain and losses, such as lasers with non-linear intracavity dynamics. Here we introduce a conceptually new class of cyclic wave systems, characterized by non-uniform double-scale dynamics with strong periodic changes of the energy spectrum and slow evolution from cycle to cycle to a statistically steady state. Taking a practically important example—random fibre laser—we show that a model describing such a system is close to integrable non-linear Schrodinger equation and needs a new formalism of wave kinetics, developed here. We derive a non-linear kinetic theory of the laser spectrum, generalizing the seminal linear model of Schawlow and Townes. Experimental results agree with our theory. The work has implications for describing kinetics of cyclical systems beyond photonics.

110 citations

Journal ArticleDOI
TL;DR: This approach can provide a plausible alternative to conventional antibodies and sets up a new paradigm for the therapeutic application of this class of materials against clinically relevant targets, and nanoMIPs can promote the development of cell imaging tools against difficult targets such as membrane proteins.
Abstract: Epidermal growth factor receptor (EGFR), a tyrosine kinase receptor, is over-expressed in many tumors, including almost half of triple-negative breast cancers. The latter belong to a very-aggressive and drug-resistant form of malignancy. Although humanized anti-EGFR antibodies can work efficiently against these cancers both as monotherapy and in combination with genotoxic drugs, instability and high production costs are some of their known drawbacks in clinical use. In addition, the development of antibodies to target membrane proteins is a very challenging task. Accordingly, the main focus of the present work is the design of supramolecular agents for the targeting of membrane proteins in cancer cells and, hence, more-specific drug delivery. These were produced using a novel double-imprinting approach based on the solid-phase method for preparation of molecularly imprinted polymer nanoparticles (nanoMIPs), which were loaded with doxorubicin and targeted toward a linear epitope of EGFR. Additionally, upon...

110 citations

Proceedings ArticleDOI
01 Aug 2019
TL;DR: This paper addresses the problem of multilingual named entity recognition on the material of 4 languages: Russian, Bulgarian, Czech and Polish using the BERT model and uses a hundred languages multilingual model as base for transfer to the mentioned Slavic languages.
Abstract: Our paper addresses the problem of multilingual named entity recognition on the material of 4 languages: Russian, Bulgarian, Czech and Polish. We solve this task using the BERT model. We use a hundred languages multilingual model as base for transfer to the mentioned Slavic languages. Unsupervised pre-training of the BERT model on these 4 languages allows to significantly outperform baseline neural approaches and multilingual BERT. Additional improvement is achieved by extending BERT with a word-level CRF layer. Our system was submitted to BSNLP 2019 Shared Task on Multilingual Named Entity Recognition and demonstrated top performance in multilingual setting for two competition metrics. We open-sourced NER models and BERT model pre-trained on the four Slavic languages.

110 citations

Book ChapterDOI
TL;DR: In this article, a review of publications on classical and quantum electrodynamics in cavities with moving boundaries is presented, with an emphasis on analytical results related to cavities having resonantly oscillating boundaries.
Abstract: This is a review of publications on classical and quantum electrodynamics in cavities with moving boundaries (in the quantum case this subject is labeled frequently as "nonstationary Casimir effect" or "dynamical Casimir effect"), from 1921 to October of 2000, with an emphasis on analytical results related to cavities with resonantly oscillating boundaries.

109 citations


Authors

Showing all 8797 results

NameH-indexPapersCitations
Dominique Pallin132113188668
Vladimir N. Uversky13195975342
Lee Sawyer130134088419
Dmitry Novikov12734883093
Simon Lin12675469084
Zeno Dixon Greenwood126100277347
Christian Ohm12687369771
Alexey Myagkov10958645630
Stanislav Babak10730866226
Alexander Zaitsev10345348690
Vladimir Popov102103050257
Alexander Vinogradov9641040879
Gueorgui Chelkov9332141816
Igor Pshenichnov8336222699
Vladimir Popov8337026390
Network Information
Related Institutions (5)
Moscow State University
123.3K papers, 1.7M citations

94% related

Russian Academy of Sciences
417.5K papers, 4.5M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

86% related

University of Paris-Sud
52.7K papers, 2.1M citations

86% related

Royal Institute of Technology
68.4K papers, 1.9M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022238
20211,774
20202,247
20192,112
20181,902