scispace - formally typeset
Search or ask a question
Institution

Moscow Institute of Physics and Technology

EducationDolgoprudnyy, Russia
About: Moscow Institute of Physics and Technology is a education organization based out in Dolgoprudnyy, Russia. It is known for research contribution in the topics: Laser & Plasma. The organization has 8594 authors who have published 16968 publications receiving 246551 citations. The organization is also known as: MIPT & Moscow Institute of Physics and Technology (State University).


Papers
More filters
Journal ArticleDOI
TL;DR: The substructures of light bosonic (axionlike) dark matter may condense into compact Bose stars and the collapse of critical-mass stars caused by attractive self-interaction of the axionlike particles is studied.
Abstract: The substructures of light bosonic (axionlike) dark matter may condense into compact Bose stars. We study the collapse of critical-mass stars caused by attractive self-interaction of the axionlike particles and find that these processes proceed in an unexpected universal way. First, nonlinear self-similar evolution (called "wave collapse" in condensed matter physics) forces the particles to fall into the star center. Second, interactions in the dense center create an outgoing stream of mildly relativistic particles which carries away an essential part of the star mass. The collapse stops when the star remnant is no longer able to support the self-similar infall feeding the collisions. We shortly discuss possible astrophysical and cosmological implications of these phenomena.

133 citations

Journal ArticleDOI
TL;DR: The observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, are of similar magnitude in p-Pb and PbPb collisions at the same multiplicities.
Abstract: Charge-dependent azimuthal particle correlations with respect to the second-order event plane in pPb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range abs(eta)<2.4, and a third particle measured in the hadron forward calorimeters (4.4< abs(eta)<5). The observed differences between the same and opposite sign correlations, as functions of multiplicity and eta gap between the two charged particles, are of similar magnitude in pPb and PbPb collisions at the same multiplicities. These results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.

133 citations

Book
26 Oct 2018
TL;DR: The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross section is by far the largest of all low-energy neutrino couplings as mentioned in this paper.
Abstract: The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross section is by far the largest of all low-energy neutrino couplings. This mode of interaction offers new opportunities to study neutrino properties and leads to a miniaturization of detector size, with potential technological applications. We observed this process at a 6.7σ confidence level, using a low-background, 14.6-kilogram CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the standard model for this process, were observed in high signal-to-background conditions. Improved constraints on nonstandard neutrino interactions with quarks are derived from this initial data set.

132 citations

Journal ArticleDOI
TL;DR: The Ischemic Stroke Lesion Segmentation challenge, which has ran now consecutively for 3 years, aims to address the problem of comparability by providing a uniformly pre-processed data set and allowing new approaches to be compared directly via the online evaluation system.
Abstract: Performance of models highly depend not only on the used algorithm but also the data set it was applied to This makes the comparison of newly developed tools to previously published approaches difficult Either researchers need to implement others' algorithms first, to establish an adequate benchmark on their data, or a direct comparison of new and old techniques is infeasible The Ischemic Stroke Lesion Segmentation (ISLES) challenge, which has ran now consecutively for 3 years, aims to address this problem of comparability ISLES 2016 and 2017 focused on lesion outcome prediction after ischemic stroke: By providing a uniformly pre-processed data set, researchers from all over the world could apply their algorithm directly A total of nine teams participated in ISLES 2015, and 15 teams participated in ISLES 2016 Their performance was evaluated in a fair and transparent way to identify the state-of-the-art among all submissions Top ranked teams almost always employed deep learning tools, which were predominately convolutional neural networks (CNNs) Despite the great efforts, lesion outcome prediction persists challenging The annotated data set remains publicly available and new approaches can be compared directly via the online evaluation system, serving as a continuing benchmark (wwwisles-challengeorg)

132 citations

Journal ArticleDOI
A.L. Sibidanov1, Kevin Varvell1, I. Adachi, Hiroaki Aihara2  +165 moreInstitutions (55)
TL;DR: In this article, the authors report the results of a study of the exclusive semileptonic decays in a hadronic decay model, where the events are tagged by fully reconstructing a second $B$ meson in the event.
Abstract: We report the results of a study of the exclusive semileptonic decays ${B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{0}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, ${\overline{B}}^{0}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, ${B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\rho}}^{0}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, ${\overline{B}}^{0}\ensuremath{\rightarrow}{\ensuremath{\rho}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$ and ${B}^{\ensuremath{-}}\ensuremath{\rightarrow}\ensuremath{\omega}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, where $\ensuremath{\ell}$ represents an electron or a muon. The events are tagged by fully reconstructing a second $B$ meson in the event in a hadronic decay mode. The measured branching fractions are $\mathcal{B}({B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{0}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(0.80\ifmmode\pm\else\textpm\fi{}0.08\ifmmode\pm\else\textpm\fi{}0.04)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, $\mathcal{B}({\overline{B}}^{0}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(1.49\ifmmode\pm\else\textpm\fi{}0.09\ifmmode\pm\else\textpm\fi{}0.07)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, $\mathcal{B}({B}^{\ensuremath{-}}\ensuremath{\rightarrow}{\ensuremath{\rho}}^{0}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(1.83\ifmmode\pm\else\textpm\fi{}0.10\ifmmode\pm\else\textpm\fi{}0.10)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, $\mathcal{B}({\overline{B}}^{0}\ensuremath{\rightarrow}{\ensuremath{\rho}}^{+}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(3.22\ifmmode\pm\else\textpm\fi{}0.27\ifmmode\pm\else\textpm\fi{}0.24)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, and $\mathcal{B}({B}^{\ensuremath{-}}\ensuremath{\rightarrow}\ensuremath{\omega}{\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}})=(1.07\ifmmode\pm\else\textpm\fi{}0.16\ifmmode\pm\else\textpm\fi{}0.07)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$, where the first error is statistical and the second one is systematic. The obtained branching fractions are inclusive of soft photon emission. We also determine the branching fractions as a function of the 4-momentum transfer squared to the leptonic system ${q}^{2}=({p}_{\ensuremath{\ell}}+{p}_{\ensuremath{ u}}{)}^{2}$, where ${p}_{\ensuremath{\ell}}$ and ${p}_{\ensuremath{ u}}$ are the lepton and neutrino 4-momenta, respectively. Using the pion modes, a recent light cone sum rule calculation, lattice QCD results and a model-independent description of the hadronic form factor, a value of the Cabibbo-Kobayashi-Maskawa matrix element $|{V}_{ub}|=(3.52\ifmmode\pm\else\textpm\fi{}0.29)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}3}$ is extracted. A structure in the two-pion invariant mass distribution near $1.3\text{ }\text{ }\mathrm{GeV}/{c}^{2}$, which might be dominated by the decay ${B}^{\ensuremath{-}}\ensuremath{\rightarrow}{f}_{2}(1270){\ensuremath{\ell}}^{\ensuremath{-}}{\overline{\ensuremath{ u}}}_{\ensuremath{\ell}}$, ${f}_{2}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{+}{\ensuremath{\pi}}^{\ensuremath{-}}$, is seen. These results are obtained from a $711\text{ }\text{ }{\mathrm{fb}}^{\ensuremath{-}1}$ data sample that contains $772\ifmmode\times\else\texttimes\fi{}{10}^{6}$ $B\overline{B}$ pairs, collected near the $\ensuremath{\Upsilon}(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy ${e}^{+}{e}^{\ensuremath{-}}$ collider.

132 citations


Authors

Showing all 8797 results

NameH-indexPapersCitations
Dominique Pallin132113188668
Vladimir N. Uversky13195975342
Lee Sawyer130134088419
Dmitry Novikov12734883093
Simon Lin12675469084
Zeno Dixon Greenwood126100277347
Christian Ohm12687369771
Alexey Myagkov10958645630
Stanislav Babak10730866226
Alexander Zaitsev10345348690
Vladimir Popov102103050257
Alexander Vinogradov9641040879
Gueorgui Chelkov9332141816
Igor Pshenichnov8336222699
Vladimir Popov8337026390
Network Information
Related Institutions (5)
Moscow State University
123.3K papers, 1.7M citations

94% related

Russian Academy of Sciences
417.5K papers, 4.5M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

86% related

University of Paris-Sud
52.7K papers, 2.1M citations

86% related

Royal Institute of Technology
68.4K papers, 1.9M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202368
2022238
20211,774
20202,247
20192,112
20181,902