scispace - formally typeset
Search or ask a question

Showing papers by "Moscow State University published in 2018"


Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations


Journal ArticleDOI
Rudi Appels1, Rudi Appels2, Kellye Eversole, Nils Stein3  +204 moreInstitutions (45)
17 Aug 2018-Science
TL;DR: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
Abstract: An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.

2,118 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1235 moreInstitutions (132)
TL;DR: This analysis expands upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars.
Abstract: On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parametrization of the defining function pðρÞ of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as R1 ¼ 10.8 þ2.0 −1.7 km for the heavier star and R2 ¼ 10.7 þ2.1 −1.5 km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than 1.97 M⊙ as required from electromagnetic observations and employ the equation-of-state parametrization, we further constrain R1 ¼ 11.9 þ1.4 −1.4 km and R2 ¼ 11.9 þ1.4 −1.4 km at the 90% credible level. Finally, we obtain constraints on pðρÞ at supranuclear densities, with pressure at twice nuclear saturation density measured at 3.5 þ2.7 −1.7 × 1034 dyn cm−2 at the 90% level.

1,595 citations


Journal ArticleDOI
10 Aug 2018-Science
TL;DR: The development of microresonator-generated frequency combs is reviewed to map out how understanding and control of their generation is providing a new basis for precision technology and establish a nascent research field at the interface of soliton physics, frequency metrology, and integrated photonics.
Abstract: The development of compact, chip-scale optical frequency comb sources (microcombs) based on parametric frequency conversion in microresonators has seen applications in terabit optical coherent communications, atomic clocks, ultrafast distance measurements, dual-comb spectroscopy, and the calibration of astophysical spectrometers and have enabled the creation of photonic-chip integrated frequency synthesizers. Underlying these recent advances has been the observation of temporal dissipative Kerr solitons in microresonators, which represent self-enforcing, stationary, and localized solutions of a damped, driven, and detuned nonlinear Schrodinger equation, which was first introduced to describe spatial self-organization phenomena. The generation of dissipative Kerr solitons provide a mechanism by which coherent optical combs with bandwidth exceeding one octave can be synthesized and have given rise to a host of phenomena, such as the Stokes soliton, soliton crystals, soliton switching, or dispersive waves. Soliton microcombs are compact, are compatible with wafer-scale processing, operate at low power, can operate with gigahertz to terahertz line spacing, and can enable the implementation of frequency combs in remote and mobile environments outside the laboratory environment, on Earth, airborne, or in outer space.

997 citations


Journal ArticleDOI
Bela Abolfathi1, D. S. Aguado2, Gabriela Aguilar3, Carlos Allende Prieto2  +361 moreInstitutions (94)
TL;DR: SDSS-IV is the fourth generation of the Sloan Digital Sky Survey and has been in operation since 2014 July. as discussed by the authors describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14).
Abstract: The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since 2014 July. This paper describes the second data release from this phase, and the 14th from SDSS overall (making this Data Release Fourteen or DR14). This release makes the data taken by SDSS-IV in its first two years of operation (2014-2016 July) public. Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey; the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data-driven machine-learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from the SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS web site (www.sdss.org) has been updated for this release and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020 and will be followed by SDSS-V.

965 citations


Journal ArticleDOI
TL;DR: The Modules for Experiments in Stellar Astrophysics (MESA) software instrument as discussed by the authors has been updated with the capability to handle floating point exceptions and stellar model optimization, as well as four new software tools.
Abstract: We update the capabilities of the software instrument Modules for Experiments in Stellar Astrophysics (MESA) and enhance its ease of use and availability. Our new approach to locating convective boundaries is consistent with the physics of convection, and yields reliable values of the convective-core mass during both hydrogen- and helium-burning phases. Stars with become white dwarfs and cool to the point where the electrons are degenerate and the ions are strongly coupled, a realm now available to study with MESA due to improved treatments of element diffusion, latent heat release, and blending of equations of state. Studies of the final fates of massive stars are extended in MESA by our addition of an approximate Riemann solver that captures shocks and conserves energy to high accuracy during dynamic epochs. We also introduce a 1D capability for modeling the effects of Rayleigh–Taylor instabilities that, in combination with the coupling to a public version of the radiation transfer instrument, creates new avenues for exploring Type II supernova properties. These capabilities are exhibited with exploratory models of pair-instability supernovae, pulsational pair-instability supernovae, and the formation of stellar-mass black holes. The applicability of MESA is now widened by the capability to import multidimensional hydrodynamic models into MESA. We close by introducing software modules for handling floating point exceptions and stellar model optimization, as well as four new software tools— , -Docker, , and mesastar.org—to enhance MESA's education and research impact.

808 citations


Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +1135 moreInstitutions (139)
TL;DR: In this article, the authors present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves.
Abstract: We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5– 20 deg2 requires at least three detectors of sensitivity within a factor of ∼2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

804 citations


Journal ArticleDOI
TL;DR: A nearly doubled volume of published in vivo experiments on transcription factor (TF) binding is profited from to expand the repertoire of binding models, replace low-quality models previously based on in vitro data only and cover more than a hundred TFs with previously unknown binding specificities.
Abstract: We present a major update of the HOCOMOCO collection that consists of patterns describing DNA binding specificities for human and mouse transcription factors. In this release, we profited from a nearly doubled volume of published in vivo experiments on transcription factor (TF) binding to expand the repertoire of binding models, replace low-quality models previously based on in vitro data only and cover more than a hundred TFs with previously unknown binding specificities. This was achieved by systematic motif discovery from more than five thousand ChIP-Seq experiments uniformly processed within the BioUML framework with several ChIP-Seq peak calling tools and aggregated in the GTRD database. HOCOMOCO v11 contains binding models for 453 mouse and 680 human transcription factors and includes 1302 mononucleotide and 576 dinucleotide position weight matrices, which describe primary binding preferences of each transcription factor and reliable alternative binding specificities. An interactive interface and bulk downloads are available on the web: http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco11. In this release, we complement HOCOMOCO by MoLoTool (Motif Location Toolbox, http://molotool.autosome.ru) that applies HOCOMOCO models for visualization of binding sites in short DNA sequences.

597 citations


Journal ArticleDOI
Craig E. Aalseth1, Fabio Acerbi2, P. Agnes3, Ivone F. M. Albuquerque4  +297 moreInstitutions (48)
TL;DR: The DarkSide-20k detector as discussed by the authors is a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LAr TPC) with an active mass of 23 t (20 t).
Abstract: Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LAr TPC) with an active (fiducial) mass of 23 t (20 t). This paper describes a preliminary design for the experiment, in which the DarkSide-20k LAr TPC is deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). This preliminary design provides a baseline for the experiment to achieve its physics goals, while further development work will lead to the final optimization of the detector parameters and an eventual technical design. Operation of DarkSide-50 demonstrated a major reduction in the dominant 39Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of $>3 \times 10^{9}$ is achievable. This, along with the use of the veto system and utilizing silicon photomultipliers in the LAr TPC, are the keys to unlocking the path to large LAr TPC detector masses, while maintaining an experiment in which less than $< 0.1$ events (other than $ u$ -induced nuclear recoils) is expected to occur within the WIMP search region during the planned exposure. DarkSide-20k will have ultra-low backgrounds than can be measured in situ, giving sensitivity to WIMP-nucleon cross sections of $1.2 \times 10^{-47}$ cm2 ( $1.1 \times 10^{-46}$ cm2) for WIMPs of 1 TeV/c2 (10 TeV/c2) mass, to be achieved during a 5 yr run producing an exposure of 100 t yr free from any instrumental background.

534 citations


Journal ArticleDOI
Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam1, Federico Ambrogi1  +2238 moreInstitutions (159)
TL;DR: In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented.
Abstract: Many measurements and searches for physics beyond the standard model at the LHC rely on the efficient identification of heavy-flavour jets, i.e. jets originating from bottom or charm quarks. In this paper, the discriminating variables and the algorithms used for heavy-flavour jet identification during the first years of operation of the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, are presented. Heavy-flavour jet identification algorithms have been improved compared to those used previously at centre-of-mass energies of 7 and 8 TeV. For jets with transverse momenta in the range expected in simulated events, these new developments result in an efficiency of 68% for the correct identification of a b jet for a probability of 1% of misidentifying a light-flavour jet. The improvement in relative efficiency at this misidentification probability is about 15%, compared to previous CMS algorithms. In addition, for the first time algorithms have been developed to identify jets containing two b hadrons in Lorentz-boosted event topologies, as well as to tag c jets. The large data sample recorded in 2016 at a centre-of-mass energy of 13 TeV has also allowed the development of new methods to measure the efficiency and misidentification probability of heavy-flavour jet identification algorithms. The b jet identification efficiency is measured with a precision of a few per cent at moderate jet transverse momenta (between 30 and 300 GeV) and about 5% at the highest jet transverse momenta (between 500 and 1000 GeV).

454 citations


Journal ArticleDOI
TL;DR: It is found that, depending on the New Physics scenario under consideration, the effect of a proper treatment of statistics on the predicted dark matter abundance can range from a few percent up to a factor of two, or more.

Journal ArticleDOI
Anne D. Bjorkman1, Anne D. Bjorkman2, Isla H. Myers-Smith2, Sarah C. Elmendorf3, Sarah C. Elmendorf4, Sarah C. Elmendorf5, Signe Normand1, Nadja Rüger6, Pieter S. A. Beck, Anne Blach-Overgaard1, Daan Blok7, J. Hans C. Cornelissen8, Bruce C. Forbes9, Damien Georges2, Scott J. Goetz10, Kevin C. Guay11, Gregory H. R. Henry12, Janneke HilleRisLambers13, Robert D. Hollister14, Dirk Nikolaus Karger15, Jens Kattge16, Peter Manning, Janet S. Prevéy, Christian Rixen, Gabriela Schaepman-Strub17, Haydn J.D. Thomas2, Mark Vellend18, Martin Wilmking19, Sonja Wipf, Michele Carbognani20, Luise Hermanutz21, Esther Lévesque22, Ulf Molau23, Alessandro Petraglia20, Nadejda A. Soudzilovskaia24, Marko J. Spasojevic25, Marcello Tomaselli20, Tage Vowles23, Juha M. Alatalo26, Heather D. Alexander27, Alba Anadon-Rosell28, Alba Anadon-Rosell19, Sandra Angers-Blondin2, Mariska te Beest29, Mariska te Beest30, Logan T. Berner10, Robert G. Björk23, Agata Buchwal31, Agata Buchwal32, Allan Buras33, Katherine S. Christie34, Elisabeth J. Cooper35, Stefan Dullinger36, Bo Elberling37, Anu Eskelinen38, Anu Eskelinen39, Esther R. Frei12, Esther R. Frei15, Oriol Grau40, Paul Grogan41, Martin Hallinger, Karen A. Harper42, Monique M. P. D. Heijmans33, James I. Hudson, Karl Hülber36, Maitane Iturrate-Garcia17, Colleen M. Iversen43, Francesca Jaroszynska44, Jill F. Johnstone45, Rasmus Halfdan Jørgensen37, Elina Kaarlejärvi30, Elina Kaarlejärvi46, Rebecca A Klady12, Sara Kuleza45, Aino Kulonen, Laurent J. Lamarque22, Trevor C. Lantz47, Chelsea J. Little48, Chelsea J. Little17, James D. M. Speed49, Anders Michelsen37, Ann Milbau50, Jacob Nabe-Nielsen1, Sigrid Schøler Nielsen1, Josep M. Ninot28, Steven F. Oberbauer51, Johan Olofsson30, Vladimir G. Onipchenko52, Sabine B. Rumpf36, Philipp R. Semenchuk35, Philipp R. Semenchuk36, Rohan Shetti19, Laura Siegwart Collier21, Lorna E. Street2, Katharine N. Suding4, Ken D. Tape53, Andrew J. Trant54, Andrew J. Trant21, Urs A. Treier1, Jean-Pierre Tremblay55, Maxime Tremblay22, Susanna Venn56, Stef Weijers57, Tara Zamin41, Noémie Boulanger-Lapointe12, William A. Gould58, David S. Hik59, Annika Hofgaard, Ingibjörg S. Jónsdóttir60, Ingibjörg S. Jónsdóttir61, Janet C. Jorgenson62, Julia A. Klein63, Borgthor Magnusson, Craig E. Tweedie64, Philip A. Wookey65, Michael Bahn66, Benjamin Blonder67, Benjamin Blonder68, Peter M. van Bodegom24, Benjamin Bond-Lamberty69, Giandiego Campetella70, Bruno Enrico Leone Cerabolini71, F. Stuart Chapin53, William K. Cornwell72, Joseph M. Craine, Matteo Dainese, Franciska T. de Vries73, Sandra Díaz74, Brian J. Enquist75, Brian J. Enquist76, Walton A. Green77, Rubén Milla78, Ülo Niinemets79, Yusuke Onoda80, Jenny C. Ordoñez81, Wim A. Ozinga33, Wim A. Ozinga82, Josep Peñuelas40, Hendrik Poorter83, Hendrik Poorter84, Peter Poschlod85, Peter B. Reich86, Peter B. Reich87, Brody Sandel88, Brandon S. Schamp89, Serge N. Sheremetev90, Evan Weiher91 
Aarhus University1, University of Edinburgh2, Institute of Arctic and Alpine Research3, University of Colorado Boulder4, National Ecological Observatory Network5, Smithsonian Institution6, Lund University7, VU University Amsterdam8, University of Lapland9, Northern Arizona University10, Bigelow Laboratory For Ocean Sciences11, University of British Columbia12, University of Washington13, Grand Valley State University14, Swiss Federal Institute for Forest, Snow and Landscape Research15, Max Planck Society16, University of Zurich17, Université de Sherbrooke18, University of Greifswald19, University of Parma20, Memorial University of Newfoundland21, Université du Québec à Trois-Rivières22, University of Gothenburg23, Leiden University24, University of California, Riverside25, Qatar University26, Mississippi State University27, University of Barcelona28, Utrecht University29, Umeå University30, University of Alaska Anchorage31, Adam Mickiewicz University in Poznań32, Wageningen University and Research Centre33, Alaska Department of Fish and Game34, University of Tromsø35, University of Vienna36, University of Copenhagen37, Helmholtz Centre for Environmental Research - UFZ38, University of Oulu39, Spanish National Research Council40, Queen's University41, Saint Mary's University42, Oak Ridge National Laboratory43, University of Aberdeen44, University of Saskatchewan45, Vrije Universiteit Brussel46, University of Victoria47, Swiss Federal Institute of Aquatic Science and Technology48, Norwegian University of Science and Technology49, Research Institute for Nature and Forest50, Florida International University51, Moscow State University52, University of Alaska Fairbanks53, University of Waterloo54, Laval University55, Deakin University56, University of Bonn57, United States Forest Service58, Simon Fraser University59, University Centre in Svalbard60, University of Iceland61, United States Fish and Wildlife Service62, Colorado State University63, University of Texas at El Paso64, University of Stirling65, University of Innsbruck66, Rocky Mountain Biological Laboratory67, University of Oxford68, Pacific Northwest National Laboratory69, University of Camerino70, University of Insubria71, University of New South Wales72, University of Manchester73, National University of Cordoba74, Santa Fe Institute75, University of Arizona76, Harvard University77, King Juan Carlos University78, Estonian University of Life Sciences79, Kyoto University80, World Agroforestry Centre81, Radboud University Nijmegen82, Forschungszentrum Jülich83, Macquarie University84, University of Regensburg85, University of Sydney86, University of Minnesota87, Santa Clara University88, Algoma University89, Komarov Botanical Institute90, University of Wisconsin–Eau Claire91
04 Oct 2018-Nature
TL;DR: Biome-wide relationships between temperature, moisture and seven key plant functional traits across the tundra and over time show that community height increased with warming across all sites, whereas other traits lagged behind predicted rates of change.
Abstract: The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.

Book ChapterDOI
01 Jan 2018
TL;DR: This chapter contains documents connected with Thinking and speech written not before 1933 as mentioned in this paper, which contains much older material: chapters 2 to 5 were written before 1930 and are included more or less intact; chapters 1, 6, and 7 were written after 1932 on the basis of existing lectures, notes, etc.
Abstract: This chapter contains documents connected with Thinking and speech written not before 1933. As mentioned previously, this book contained much older material: chapters 2 to 5 were written before 1930 and are included more or less intact; chapters 1, 6, and 7 were written after 1932 on the basis of existing lectures, notes, etc.. (Yasnitsky & Van der Veer, 2016). The exact circumstances of the final composition of the book are not fully known (cf. Van der Veer & Valsiner 1991), and recently Mecacci revealed that just part of the original draft was preserved (Mecacci 2015).

Journal ArticleDOI
P. Agnes1, Ivone F. M. Albuquerque2, Thomas Alexander3, A. K. Alton4  +193 moreInstitutions (30)
TL;DR: The results of a search for dark matter weakly interacting massive particles (WIMPs) in the mass range below 20 GeV/c^{2} using a target of low-radioactivity argon with a 6786.0 kg d exposure are presented.
Abstract: We present the results of a search for dark matter weakly interacting massive particles (WIMPs) in the mass range below 20 GeV/c2 using a target of low-radioactivity argon with a 6786.0 kg d exposure. The data were obtained using the DarkSide-50 apparatus at Laboratori Nazionali del Gran Sasso. The analysis is based on the ionization signal, for which the DarkSide-50 time projection chamber is fully efficient at 0.1 keVee. The observed rate in the detector at 0.5 keVee is about 1.5 event/keVee/kg/d and is almost entirely accounted for by known background sources. We obtain a 90% C.L. exclusion limit above 1.8 GeV/c2 for the spin-independent cross section of dark matter WIMPs on nucleons, extending the exclusion region for dark matter below previous limits in the range 1.8–6 GeV/c2.

Journal ArticleDOI
TL;DR: The manufacture of targeted exosome-based formulations with superior structure and therapeutic indices for systemic administration of PTX-loaded exosomes with incorporated aminoethylanisamide-polyethylene glycol vector moiety to target the sigma receptor, which is overexpressed by lung cancer cells is reported.

Journal ArticleDOI
TL;DR: Recent advances in understanding the molecular pathways driving tumor progression and related targeted therapies in lung ADCs are discussed and the cell death mechanisms induced by different treatment strategies and their contribution to therapy resistance are analyzed.
Abstract: The most common type of lung cancer is adenocarcinoma (ADC), comprising around 40% of all lung cancer cases. In spite of achievements in understanding the pathogenesis of this disease and the development of new approaches in its treatment, unfortunately, lung ADC is still one of the most aggressive and rapidly fatal tumor types with overall survival less than 5 years. Lung ADC is often diagnosed at advanced stages involving disseminated metastatic tumors. This is particularly important for the successful development of new approaches in cancer therapy. The high resistance of lung ADC to conventional radiotherapies and chemotherapies represents a major challenge for treatment effectiveness. Here we discuss recent advances in understanding the molecular pathways driving tumor progression and related targeted therapies in lung ADCs. In addition, the cell death mechanisms induced by different treatment strategies and their contribution to therapy resistance are analyzed. The focus is on approaches to overcoming drug resistance in order to improve future treatment decisions.

Journal ArticleDOI
Morad Aaboud1, Georges Aad2, Brad Abbott3, Ovsat Abdinov4  +2954 moreInstitutions (225)
TL;DR: In this paper, a search for new phenomena in final states with an energetic jet and large missing transverse momentum is reported, and the results are translated into exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, and supersymmetric particles in several compressed scenarios.
Abstract: Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses proton-proton collision data corresponding to an integrated luminosity of 36.1 fb−1 at a centre-of-mass energy of 13 TeV collected in 2015 and 2016 with the ATLAS detector at the Large Hadron Collider. Events are required to have at least one jet with a transverse momentum above 250 GeV and no leptons (e or μ). Several signal regions are considered with increasing requirements on the missing transverse momentum above 250 GeV. Good agreement is observed between the number of events in data and Standard Model predictions. The results are translated into exclusion limits in models with pair-produced weakly interacting dark-matter candidates, large extra spatial dimensions, and supersymmetric particles in several compressed scenarios.

Proceedings Article
14 Mar 2018
TL;DR: Stochastic Weight Averaging (SWA) as discussed by the authors is a simple averaging of multiple points along the trajectory of SGD, with a cyclical or constant learning rate, leads to better generalization than conventional training.
Abstract: Deep neural networks are typically trained by optimizing a loss function with an SGD variant, in conjunction with a decaying learning rate, until convergence. We show that simple averaging of multiple points along the trajectory of SGD, with a cyclical or constant learning rate, leads to better generalization than conventional training. We also show that this Stochastic Weight Averaging (SWA) procedure finds much flatter solutions than SGD, and approximates the recent Fast Geometric Ensembling (FGE) approach with a single model. Using SWA we achieve notable improvement in test accuracy over conventional SGD training on a range of state-of-the-art residual networks, PyramidNets, DenseNets, and Shake-Shake networks on CIFAR-10, CIFAR-100, and ImageNet. In short, SWA is extremely easy to implement, improves generalization, and has almost no computational overhead.

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the state-of-the-art methods for strong electronic correlations, starting with the local, eminently important correlations of dynamical mean field theory (DMFT).
Abstract: Strong electronic correlations pose one of the biggest challenges to solid state theory. We review recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT). On top of this, non-local correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge-, magnetic-, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. We provide an overview of the successes and results achieved---hitherto mainly for model Hamiltonians---and outline future prospects for realistic material calculations.

Journal ArticleDOI
30 Mar 2018-Science
TL;DR: This work unites adaptive coloration and tissuelike mechanical properties into moldable elastomers through the self-assembly of linear-bottlebrush-linear triblock copolymers, which results in physically cross-linked networks that display vibrant color, extreme softness, and intense strain stiffening on par with that of skin tissue.
Abstract: Active camouflage is widely recognized as a soft-tissue feature, and yet the ability to integrate adaptive coloration and tissuelike mechanical properties into synthetic materials remains elusive. We provide a solution to this problem by uniting these functions in moldable elastomers through the self-assembly of linear-bottlebrush-linear triblock copolymers. Microphase separation of the architecturally distinct blocks results in physically cross-linked networks that display vibrant color, extreme softness, and intense strain stiffening on par with that of skin tissue. Each of these functional properties is regulated by the structure of one macromolecule, without the need for chemical cross-linking or additives. These materials remain stable under conditions characteristic of internal bodily environments and under ambient conditions, neither swelling in bodily fluids nor drying when exposed to air.

Journal ArticleDOI
TL;DR: In this paper, the performance of the modified system is studied using proton-proton collision data at center-of-mass energy √s=13 TeV, collected at the LHC in 2015 and 2016.
Abstract: The CMS muon detector system, muon reconstruction software, and high-level trigger underwent significant changes in 2013–2014 in preparation for running at higher LHC collision energy and instantaneous luminosity. The performance of the modified system is studied using proton-proton collision data at center-of-mass energy √s=13 TeV, collected at the LHC in 2015 and 2016. The measured performance parameters, including spatial resolution, efficiency, and timing, are found to meet all design specifications and are well reproduced by simulation. Despite the more challenging running conditions, the modified muon system is found to perform as well as, and in many aspects better than, previously. We dedicate this paper to the memory of Prof. Alberto Benvenuti, whose work was fundamental for the CMS muon detector.

Journal ArticleDOI
TL;DR: Alfred P. Sloan Foundation, U.S. Department of Energy Office of Science, Center for High Performance Computing at the University of Utah, Brazilian Participation Group, Carnegie Institution for Science; Carnegie Mellon University; Chilean Participation Group; French Participation Group and Harvard-Smithsonian Center for Astrophysics; Instituto de Astrofisica de Canarias; Johns Hopkins University; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo; Lawrence Berkeley National Laboratory; Leibniz Institut fur Astrophysik Potsdam
Abstract: Alfred P. Sloan Foundation; U.S. Department of Energy Office of Science; Center for High-Performance Computing at the University of Utah; Brazilian Participation Group; Carnegie Institution for Science; Carnegie Mellon University; Chilean Participation Group; French Participation Group; Harvard-Smithsonian Center for Astrophysics; Instituto de Astrofisica de Canarias; Johns Hopkins University; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo; Lawrence Berkeley National Laboratory; Leibniz Institut fur Astrophysik Potsdam (AIP); Max-Planck-Institut fur Astronomie (MPIA Heidelberg); Max-Planck-Institut fur Astrophysik (MPA Garching); Max-Planck-Institut fur Extra-terrestrische Physik (MPE); National Astronomical Observatories of China; New Mexico State University; New York University; University of Notre Dame; Observatorio Nacional/MCTI; Ohio State University; Pennsylvania State University; Shanghai Astronomical Observatory; United Kingdom Participation Group; Universidad Nacional Autonoma de Mexico; University of Arizona; University of Colorado Boulder; University of Oxford; University of Portsmouth; University of Utah; University of Virginia; University of Washington; University of Wisconsin; Vanderbilt University; Yale University; National Science Foundation [AST-1109178]; NSF [AST-1616636, AST-1211673]; Premium Postdoctoral Research Program of the Hungarian Academy of Sciences; Hungarian NKFI Grants of the Hungarian National Research, Development and Innovation Office [K-119517]; Birgit and Hellmuth Hertz Foundation (via the Royal Physiographic Society of Lund); Crafoord Foundation; Stiftelsen Olle Engkvist Byggmastare

Journal ArticleDOI
TL;DR: In this paper, the authors present new developments in inorganic scintillators widely used for radiation detection. And they address major emerging research topics outlining current needs for applications and material sciences issues with the overall aim to provide an up-to-date picture of the field.
Abstract: This paper presents new developments in inorganic scintillators widely used for radiation detection. It addresses major emerging research topics outlining current needs for applications and material sciences issues with the overall aim to provide an up-to-date picture of the field. While the traditional forms of scintillators have been crystals and ceramics, new research on films, nanoparticles, and microstructured materials is discussed as these material forms can bring new functionality and therefore find applications in radiation detection. The last part of the contribution reports on the very recent evolutions of the most advanced theories, methods, and analyses to describe the scintillation mechanisms.

Journal ArticleDOI
P. Agnes1, Ivone F. M. Albuquerque2, Thomas Alexander3, A. K. Alton4  +194 moreInstitutions (30)
TL;DR: The expected recoil spectra for dark matter-electron scattering in argon and, under the assumption of momentum-independent scattering, improve upon existing limits from XENON10 for dark-matter particles with masses between 30 and 100 MeV/c^{2}.
Abstract: We present new constraints on sub-GeV dark-matter particles scattering off electrons based on 6780.0 kg d of data collected with the DarkSide-50 dual-phase argon time projection chamber. This analysis uses electroluminescence signals due to ionized electrons extracted from the liquid argon target. The detector has a very high trigger probability for these signals, allowing for an analysis threshold of three extracted electrons, or approximately 0.05 keVee. We calculate the expected recoil spectra for dark matter-electron scattering in argon and, under the assumption of momentum-independent scattering, improve upon existing limits from XENON10 for dark-matter particles with masses between 30 and 100 MeV/c^{2}.

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2240 moreInstitutions (157)
TL;DR: In this article, a measurement of the H→ττ signal strength is performed using events recorded in proton-proton collisions by the CMS experiment at the LHC in 2016 at a center-of-mass energy of 13TeV.

Journal ArticleDOI
TL;DR: It is found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony in the performance of co-occurring species and enhances ecosystem stability directly, albeit weakly.
Abstract: A substantial body of evidence has demonstrated that biodiversity stabilizes ecosystem functioning over time in grassland ecosystems. However, the relative importance of different facets of biodiversity underlying the diversity-stability relationship remains unclear. Here we use data from 39 grassland biodiversity experiments and structural equation modelling to investigate the roles of species richness, phylogenetic diversity and both the diversity and community-weighted mean of functional traits representing the 'fast-slow' leaf economics spectrum in driving the diversity-stability relationship. We found that high species richness and phylogenetic diversity stabilize biomass production via enhanced asynchrony in the performance of co-occurring species. Contrary to expectations, low phylogenetic diversity enhances ecosystem stability directly, albeit weakly. While the diversity of fast-slow functional traits has a weak effect on ecosystem stability, communities dominated by slow species enhance ecosystem stability by increasing mean biomass production relative to the standard deviation of biomass over time. Our in-depth, integrative assessment of factors influencing the diversity-stability relationship demonstrates a more multicausal relationship than has been previously acknowledged.

Journal ArticleDOI
Roel Aaij1, Gregory Ciezarek, P. Collins1, Stefan Roiser1  +820 moreInstitutions (51)
TL;DR: In this paper, the τ-lepton decays with three charged pions in the final state were measured using a data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV.
Abstract: The ratio of branching fractions R(D^{*-})≡B(B^{0}→D^{*-}τ^{+}ν_{τ})/B(B^{0}→D^{*-}μ^{+}ν_{μ}) is measured using a data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb^{-1}. For the first time, R(D^{*-}) is determined using the τ-lepton decays with three charged pions in the final state. The B^{0}→D^{*-}τ^{+}ν_{τ} yield is normalized to that of the B^{0}→D^{*-}π^{+}π^{-}π^{+} mode, providing a measurement of B(B^{0}→D^{*-}τ^{+}ν_{τ})/B(B^{0}→D^{*-}π^{+}π^{-}π^{+})=1.97±0.13±0.18, where the first uncertainty is statistical and the second systematic. The value of B(B^{0}→D^{*-}τ^{+}ν_{τ})=(1.42±0.094±0.129±0.054)% is obtained, where the third uncertainty is due to the limited knowledge of the branching fraction of the normalization mode. Using the well-measured branching fraction of the B^{0}→D^{*-}μ^{+}ν_{μ} decay, a value of R(D^{*-})=0.291±0.019±0.026±0.013 is established, where the third uncertainty is due to the limited knowledge of the branching fractions of the normalization and B^{0}→D^{*-}μ^{+}ν_{μ} modes. This measurement is in agreement with the standard model prediction and with previous results.

Journal ArticleDOI
Maria Dornelas1, Laura H. Antão2, Laura H. Antão1, Faye Moyes1  +283 moreInstitutions (130)
TL;DR: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time to enable users to calculate temporal trends in biodiversity within and amongst assemblage using a broad range of metrics.
Abstract: Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record.Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km(2) (158 cm(2)) to 100 km(2) (1,000,000,000,000 cm(2)).Time period and grainBio: TIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year.Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.

Journal ArticleDOI
TL;DR: These are the first direct limits for N mass above 500 GeV and the first limits obtained at a hadron collider for N masses below 40 Ge V.
Abstract: A search for a heavy neutral lepton N of Majorana nature decaying into a W boson and a charged lepton is performed using the CMS detector at the LHC. The targeted signature consists of three prompt charged leptons in any flavor combination of electrons and muons. The data were collected in proton-proton collisions at a center-of-mass energy of 13 TeV, with an integrated luminosity of 35.9 fb^(−1). The search is performed in the N mass range between 1 GeV and 1.2 TeV. The data are found to be consistent with the expected standard model background. Upper limits are set on the values of |V_(eN)|^2and |V_(μN)|^2, where V_(lN) is the matrix element describing the mixing of N with the standard model neutrino of flavor l. These are the first direct limits for N masses above 500 GeV and the first limits obtained at a hadron collider for N masses below 40 GeV.

Journal ArticleDOI
TL;DR: It is demonstrated that these two systems of cell–cell communication are not strictly separated, as many cytokines in vitro, ex vivo, and in vivo are released in EV-encapsulated forms and are capable of eliciting biological effects upon contact with sensitive cells.
Abstract: Cytokines are soluble factors that mediate cell-cell communications in multicellular organisms. Recently, another system of cell-cell communication was discovered, which is mediated by extracellular vesicles (EVs). Here, we demonstrate that these two systems are not strictly separated, as many cytokines in vitro, ex vivo, and in vivo are released in EV-encapsulated forms and are capable of eliciting biological effects upon contact with sensitive cells. Association with EVs is not necessarily a property of a particular cytokine but rather of a biological system and can be changed upon system activation. EV-encapsulated cytokines were not detected by standard cytokine assays. Deciphering the regulatory mechanisms of EV-encapsulation will lead to a better understanding of cell-cell communications in health and disease.