scispace - formally typeset
Search or ask a question
Institution

Potsdam Institute for Climate Impact Research

FacilityPotsdam, Germany
About: Potsdam Institute for Climate Impact Research is a facility organization based out in Potsdam, Germany. It is known for research contribution in the topics: Climate change & Global warming. The organization has 1519 authors who have published 5098 publications receiving 367023 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A broad survey of 90 experts who were amongst the most active scientific publishers on the topic of sea level in recent years provided a probabilistic assessment of sea-level rise by AD 2100 and AD 2300 under two contrasting temperature scenarios.

264 citations

Journal ArticleDOI
TL;DR: Research highlights food demand, agricultural technology and conservation constrain bio-energy supply, and total global primary bio- energy potentials in 2050 may be 160–270 EJ/yr.

263 citations

Journal ArticleDOI
TL;DR: A number of recent studies taking the semi-empiric approach have predicted much higher sea level rise for the twenty-first century than the IPCC, exceeding one metre if greenhouse gas emissions continue to escalate.
Abstract: In its 2007 report 1, the Intergovernmental Panel on Climate Change (IPCC) projected a global sea level rise of 18 to 59 centimetres from 1990 to the 2090s, plus an unspecified amount that could come from changes in the large ice sheets covering Greenland and Antarctica. But the physical climate models used by the IPCC have some limitations, prompting the search for alternative approaches to estimating sea level rise. New semi-empirical approaches are based on the idea that the rate of sea level rise is proportional to the amount of global warming — the warmer it gets, the faster ice melts — and they use past sea level and temperature data to quantify this effect. Over the course of the twentieth century, the rate of sea level rise has roughly tripled in response to 0.8 °C global warming2. Since the beginning of satellite measurements, sea level has risen about 80 per cent faster, at 3.4 millimetres per year3, than the average IPCC model projection of 1.9 millimetres per year. The difference between the semi-empirical estimates and the model-based estimates of the IPCC can be attributed largely to the response of continental ice to greenhouse warming. The IPCC range assumes a near-zero net contribution of the Greenland and Antarctic ice sheets to future sea level rise, on the basis that Antarctica is expected to gain mass from an increase in snowfall. Observations show, however, that both ice sheets have been losing mass at an accelerating rate over the past two decades4. A number of recent studies taking the semi-empirical approach have predicted much higher sea level rise for the twenty-first century than the IPCC, exceeding one metre if greenhouse gas emissions continue to escalate (Fig. 1). These new results have found wide recognition in the scientific community, as recent broad-based assessments show5– 7. The question is: how plausible are the new estimates? Although the popular media tend to focus on the upper limits of these projections, reaching the upper limits is, by definition, extremely unlikely. And at the high temperatures that produce extreme rises in sea level, predicting the response of the climate system is difficult. Upper limits also depend on how uncertainties are treated. Comparing the central estimates of sea level rise projections is therefore more informative. For a moderately pessimistic emissions scenario, named A1B, which results in about 3 °C global warming above the 1990 level by the 2090s, the IPCC projects 35 centimetres of sea level rise. This, rather implausibly, assumes no acceleration beyond the rate of sea level rise observed during the past 15 years, despite temperatures increasing by four times as much as in the twentieth century. A recent study by Martin Vermeer and me8, in contrast, yields a central estimate of 124 centimetres by 2100 and 114 centimetres by 2095. all the ice

263 citations

Journal ArticleDOI
22 Apr 2010-Nature
TL;DR: Current national emissions targets can't limit global warming to 2 °C, calculate Joeri Rogelj, Malte Meinshausen and colleagues — they might even lock the world into exceeding 3 °C warming.
Abstract: Current national emissions targets can't limit global warming to 2 °C, calculate Joeri Rogelj, Malte Meinshausen and colleagues — they might even lock the world into exceeding 3 °C warming.

263 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used Support Vector Machines (SVM) to classify abandoned agriculture for one MODIS tile in Eastern Europe, where abandoned agriculture was widespread and showed that it is possible to map abandoned agriculture from MODIS data with an overall classification accuracy of 65%.

262 citations


Authors

Showing all 1589 results

NameH-indexPapersCitations
Carl Folke133360125990
Adam Drewnowski10648641107
Jürgen Kurths105103862179
Markus Reichstein10338653385
Stephen Polasky9935459148
Sandy P. Harrison9632934004
Owen B. Toon9442432237
Stephen Sitch9426252236
Yong Xu88139139268
Dieter Neher8542426225
Johan Rockström8523657842
Jonathan A. Foley8514470710
Robert J. Scholes8425337019
Christoph Müller8245727274
Robert J. Nicholls7951535729
Network Information
Related Institutions (5)
Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

88% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

87% related

University of Alaska Fairbanks
17K papers, 750.5K citations

86% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

85% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022107
2021479
2020486
2019332
2018355