scispace - formally typeset
Search or ask a question
Institution

Potsdam Institute for Climate Impact Research

FacilityPotsdam, Germany
About: Potsdam Institute for Climate Impact Research is a facility organization based out in Potsdam, Germany. It is known for research contribution in the topics: Climate change & Global warming. The organization has 1519 authors who have published 5098 publications receiving 367023 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors constructed cities from the bottom up by clustering populated areas obtained from high-resolution data and found that Zipf's law for population holds for cities as small as 5,000 inhabitants in Great Britain and 12, 000 inhabitants in the US.
Abstract: The distribution of city populations has attracted much attention, in part because it constrains models of local growth. However, there is no consensus on the distribution below the very upper tail, because available data need to rely on "legal" rather than "economic" definitions for medium and small cities. To remedy this difficulty, we construct cities "from the bottom up" by clustering populated areas obtained from high-resolution data. We find that Zipf's law for population holds for cities as small as 5,000 inhabitants in Great Britain and 12,000 inhabitants in the US. We also find a Zipf's law for areas. JEL: R11, R12, R23

319 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that the multi-model mean of the CMIP5 (Coupled Model Intercomparison Project) climate models accurately reproduces the evolution over time and spatial patterns of the historically observed increase in monthly heat extremes.
Abstract: Climatic warming of about 0.5 C in the global mean since the 1970s has strongly increased the occurrence-probability of heat extremes on monthly to seasonal time scales. For the 21st century, climate models predict more substantial warming. Here we show that the multi-model mean of the CMIP5 (Coupled Model Intercomparison Project) climate models accurately reproduces the evolution over time and spatial patterns of the historically observed increase in monthly heat extremes. For the near-term (i.e., by 2040), the models predict a robust, several-fold increase in the frequency of such heat extremes, irrespective of the emission scenario. However, mitigation can strongly reduce the number of heat extremes by the second half of the 21st century. Unmitigated climate change causes most (>50%) continental regions to move to a new climatic regime with the coldest summer months by the end of the century substantially hotter than the hottest experienced today. We show that the land fraction experiencing extreme heat as a function of global mean temperature follows a simple cumulative distribution function, which depends only on natural variability and the level of spatial heterogeneity in the warming.

317 citations

Journal ArticleDOI
10 Sep 2020-Nature
TL;DR: In this paper, the authors used an ensemble of land-use and biodiversity models to assess whether and how humans can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity.
Abstract: Increased efforts are required to prevent further losses to terrestrial biodiversity and the ecosystem services that it provides1,2. Ambitious targets have been proposed, such as reversing the declining trends in biodiversity3; however, just feeding the growing human population will make this a challenge4. Here we use an ensemble of land-use and biodiversity models to assess whether—and how—humanity can reverse the declines in terrestrial biodiversity caused by habitat conversion, which is a major threat to biodiversity5. We show that immediate efforts, consistent with the broader sustainability agenda but of unprecedented ambition and coordination, could enable the provision of food for the growing human population while reversing the global terrestrial biodiversity trends caused by habitat conversion. If we decide to increase the extent of land under conservation management, restore degraded land and generalize landscape-level conservation planning, biodiversity trends from habitat conversion could become positive by the mid-twenty-first century on average across models (confidence interval, 2042–2061), but this was not the case for all models. Food prices could increase and, on average across models, almost half (confidence interval, 34–50%) of the future biodiversity losses could not be avoided. However, additionally tackling the drivers of land-use change could avoid conflict with affordable food provision and reduces the environmental effects of the food-provision system. Through further sustainable intensification and trade, reduced food waste and more plant-based human diets, more than two thirds of future biodiversity losses are avoided and the biodiversity trends from habitat conversion are reversed by 2050 for almost all of the models. Although limiting further loss will remain challenging in several biodiversity-rich regions, and other threats—such as climate change—must be addressed to truly reverse the declines in biodiversity, our results show that ambitious conservation efforts and food system transformation are central to an effective post-2020 biodiversity strategy. To promote the recovery of the currently declining global trends in terrestrial biodiversity, increases in both the extent of land under conservation management and the sustainability of the global food system from farm to fork are required.

316 citations

Journal ArticleDOI
TL;DR: The Land-Use Harmonization 2 (LUH2) project is presented, which smoothly connects updated historical reconstructions of land use with eight new future projections in the format required for ESMs to enable new and improved estimates of the combined effects of landUse on the global carbon–climate system.
Abstract: . Human land-use activities have resulted in large changes to the biogeochemical and biophysical properties of the Earth surface, with consequences for climate and other ecosystem services. In the future, land-use activities are likely to expand and/or intensify further to meet growing demands for food, fiber, and energy. As part of the World Climate Research Program Coupled Model Intercomparison Project (CMIP6), the international community is developing the next generation of advanced Earth System Models (ESMs) to estimate the combined effects of human activities (e.g. land use and fossil fuel emissions) on the carbon-climate system. A new set of historical data based on the History of the Global Environment database (HYDE), and multiple alternative scenarios of the future (2015–2100) from Integrated Assessment Model (IAM) teams, are required as input for these models. Here we present results from the Land-use Harmonization 2 (LUH2) project, with the goal to smoothly connect updated historical reconstructions of land-use with new future projections in the format required for ESMs. The harmonization strategy estimates the fractional land-use patterns, underlying land-use transitions, key agricultural management information, and resulting secondary lands annually, while minimizing the differences between the end of the historical reconstruction and IAM initial conditions and preserving changes depicted by the IAMs in the future. The new approach builds off a similar effort from CMIP5, and is now provided at higher resolution (0.25 × 0.25 degree), over a longer time domain (850–2100, with extensions to 2300), with more detail (including multiple crop and pasture types and associated management practices), using more input datasets (including Landsat remote sensing data), updated algorithms (wood harvest and shifting cultivation), and is assessed via a new diagnostic package. The new LUH2 products contain > 50 times the information content of the datasets used in CMIP5, and are designed to enable new and improved estimates of the combined effects of land-use on the global carbon-climate system.

316 citations

Journal ArticleDOI
TL;DR: This paper analyzed the impacts of climate extremes on yield anomalies of maize, soybeans, rice and spring wheat at the global scale using sub-national yield data and applying a machine-learning algorithm.
Abstract: Climate extremes, such as droughts or heat waves, can lead to harvest failures and threaten the livelihoods of agricultural producers and the food security of communities worldwide. Improving our understanding of their impacts on crop yields is crucial to enhance the resilience of the global food system. This study analyses, to our knowledge for the first time, the impacts of climate extremes on yield anomalies of maize, soybeans, rice and spring wheat at the global scale using sub-national yield data and applying a machine-learning algorithm. We find that growing season climate factors - including mean climate as well as climate extremes - explain 20%-49% of the variance of yield anomalies (the range describes the differences between crop types), with 18%-43% of the explained variance attributable to climate extremes, depending on crop type. Temperature-related extremes show a stronger association with yield anomalies than precipitation-related factors, while irrigation partly mitigates negative effects of high temperature extremes. We developed a composite indicator to identify hotspot regions that are critical for global production and particularly susceptible to the effects of climate extremes. These regions include North America for maize, spring wheat and soy production, Asia in the case of maize and rice production as well as Europe for spring wheat production. Our study highlights the importance of considering climate extremes for agricultural predictions and adaptation planning and provides an overview of critical regions that are most susceptible to variations in growing season climate and climate extremes.

315 citations


Authors

Showing all 1589 results

NameH-indexPapersCitations
Carl Folke133360125990
Adam Drewnowski10648641107
Jürgen Kurths105103862179
Markus Reichstein10338653385
Stephen Polasky9935459148
Sandy P. Harrison9632934004
Owen B. Toon9442432237
Stephen Sitch9426252236
Yong Xu88139139268
Dieter Neher8542426225
Johan Rockström8523657842
Jonathan A. Foley8514470710
Robert J. Scholes8425337019
Christoph Müller8245727274
Robert J. Nicholls7951535729
Network Information
Related Institutions (5)
Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

88% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

87% related

University of Alaska Fairbanks
17K papers, 750.5K citations

86% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

85% related

National Center for Atmospheric Research
19.7K papers, 1.4M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023101
2022107
2021479
2020486
2019332
2018355