scispace - formally typeset
Search or ask a question
Institution

Swedish University of Agricultural Sciences

EducationUppsala, Sweden
About: Swedish University of Agricultural Sciences is a education organization based out in Uppsala, Sweden. It is known for research contribution in the topics: Population & Soil water. The organization has 13510 authors who have published 35241 publications receiving 1414458 citations. The organization is also known as: Sveriges Lantbruksuniversitet & SLU.


Papers
More filters
Journal ArticleDOI
TL;DR: It is argued that maintaining and, where possible, restoring the integrity of dwindling intact forests is an urgent priority for current global efforts to halt the ongoing biodiversity crisis, slow rapid climate change and achieve sustainability goals.
Abstract: As the terrestrial human footprint continues to expand, the amount of native forest that is free from significant damaging human activities is in precipitous decline. There is emerging evidence that the remaining intact forest supports an exceptional confluence of globally significant environmental values relative to degraded forests, including imperilled biodiversity, carbon sequestration and storage, water provision, indigenous culture and the maintenance of human health. Here we argue that maintaining and, where possible, restoring the integrity of dwindling intact forests is an urgent priority for current global efforts to halt the ongoing biodiversity crisis, slow rapid climate change and achieve sustainability goals. Retaining the integrity of intact forest ecosystems should be a central component of proactive global and national environmental strategies, alongside current efforts aimed at halting deforestation and promoting reforestation.

597 citations

Journal ArticleDOI
TL;DR: In this paper, the role of low molecular weight (LMW) DOM compounds in the C dynamics of temperate and boreal forest soils focussing in particular on organic acids, amino acids and sugars was assessed.
Abstract: Dissolved organic matter (DOM), typically quantified as dissolved organic carbon (DOC), has been hypothesized to play many roles in pedogenesis and soil biogeochemical cycles, however, most research to date concerning forest soils has focussed on the high molecular weight (HMW) components of this DOM. This review aims to assess the role of low molecular weight (LMW) DOM compounds in the C dynamics of temperate and boreal forest soils focussing in particular on organic acids, amino acids and sugars. The current knowledge of concentrations, mineralization kinetics and production rates and sources in soil are summarised. We conclude that although these LMW compounds are typically maintained at very low concentrations in the soil solution (

597 citations

Journal ArticleDOI
TL;DR: Peichl et al. as mentioned in this paper investigated patterns and controls of the seasonal and inter-annual variations in energy fluxes and partitioning of the water budget (i.e., precipitation, P; evapotranspiration, ET; discharge, Q; and soil water storage, Delta S) over five years (2001-2005).
Abstract: This study investigated patterns and controls of the seasonal and inter-annual variations in energy fluxes (i.e., sensible heat, H, and latent heat, lambda E) and partitioning of the water budget (i.e., precipitation, P; evapotranspiration, ET; discharge, Q; and soil water storage, Delta S) over five years (2001-2005) in a boreal oligotrophic fen in northern Sweden based on continuous eddy covariance, water table level (WTL), and weir measurements. For the growing season (May 1 to September 31), the 5 year averages (+/- standard deviation) of the midday (10:00 to 14:00 h) Bowen ratio (beta, i.e., H/lambda E) was 0.86 +/- 0.08. Seasonal and inter-annual variability of beta was mainly driven by lambda E which itself was strongly controlled by both weather (i.e., vapor pressure deficit, D, and net radiation, R-n) and physiological parameters (i.e., surface resistance). During the growing season, surface resistance largely exceeded aerodynamic resistance, which together with low mean values of the actual ET to potential ET ratio (0.55 +/- 0.05) and Priestley-Taylor alpha (0.89) suggests significant physiological constrains on ET in this well-watered fen. Among the water budget components, the inter-annual variability of ET was lower (199 to 298 mm) compared to Q (225 to 752 mm), with each accounting on average for 34 and 65% of the ecosystem water loss, respectively. The fraction of P expended into ET was negatively correlated to P and positively to R-n. Although a decrease in WTL caused a reduction of the surface conductance, the overall effect of WTL on ET was limited. Non-growing season (October 1 to April 30) fluxes of H, lambda E, and Q were significant representing on average -67%, 13%, and 61%, respectively, of their growing season sums (negative sign indicates opposite flux direction between the two seasons). Overall, our findings suggest that plant functional type composition, P and R-n dynamics (i.e., amount and timing) were the major controls on the partitioning of the mire energy and water budgets. This has important implications for the regional climate as well as for ecosystem development, nutrient, and carbon dynamics. Citation: Peichl, M., J. Sagerfors, A. Lindroth, I. Buffam, A. Grelle, L. Klemedtsson, H. Laudon, and M. B. Nilsson (2013), Energy exchange and water budget partitioning in a boreal minerogenic mire, J. Geophys. Res. Biogeosci., 118, 1-13, doi:10.1029/2012JG002073.

592 citations

Journal ArticleDOI
TL;DR: The crude extract of fruits showed the highest inhibitory effect in both 2,2-azobis(2,4-dimethylvaleronitrile) (AMVN) and ascorbate-iron induced lipid peroxidations.
Abstract: Different fractions of sea buckthorn fruits were investigated for antioxidant activity and its relationship to different phytonutrients. Capacity to scavenge radicals of the crude extract, like the phenolic and ascorbate extracts, decreased significantly with increased maturation. The changes were strongly correlated with the content of total phenolics and ascorbic acid. Antioxidant capacity of the lipophilic extract increased significantly and corresponded to the increase in total carotenoids. The phenolic fractions made a major contribution to the total antioxidant capacity due to the high content of total phenolics. The lipophilic fractions were most effective if the comparison was based on the ratio between antioxidant capacity and content of antioxidants. The crude extract of fruits showed the highest inhibitory effect in both 2,2-azobis(2,4-dimethylvaleronitrile) (AMVN) and ascorbate-iron induced lipid peroxidations. The aqueous and ascorbate-free extracts showed higher inhibition in the AMVN assay, but lower inhibition in ascorbate-iron induced peroxidation, than the lipophilic extract.

592 citations

Journal ArticleDOI
TL;DR: The results strongly support the contention that endogenous auxin promotes cell elongation in intact plants and propose that growth at high temperature promotes an increase in auxin levels resulting in increased hypocotyl elongation.
Abstract: Physiological studies with excised stem segments have implicated the plant hormone indole-3-acetic acid (IAA or auxin) in the regulation of cell elongation. Supporting evidence from intact plants has been somewhat more difficult to obtain, however. Here, we report the identification and characterization of an auxin-mediated cell elongation growth response in Arabidopsis thaliana. When grown in the light at high temperature (29°C), Arabidopsis seedlings exhibit dramatic hypocotyl elongation compared with seedlings grown at 20°C. This temperature-dependent growth response is sharply reduced by mutations in the auxin response or transport pathways and in seedlings containing reduced levels of free IAA. In contrast, mutants deficient in gibberellin and abscisic acid biosynthesis or in ethylene response are unaffected. Furthermore, we detect a corresponding increase in the level of free IAA in seedlings grown at high temperature, suggesting that temperature regulates auxin synthesis or catabolism to mediate this growth response. Consistent with this possibility, high temperature also stimulates other auxin-mediated processes including auxin-inducible gene expression. Based on these results, we propose that growth at high temperature promotes an increase in auxin levels resulting in increased hypocotyl elongation. These results strongly support the contention that endogenous auxin promotes cell elongation in intact plants.

591 citations


Authors

Showing all 13653 results

NameH-indexPapersCitations
Svante Pääbo14740784489
Lars Klareskog13169763281
Stephen Hillier129113883831
Carol V. Robinson12367051896
Jun Yu121117481186
Peter J. Anderson12096663635
David E. Clapham11938258360
Angela M. Gronenborn11356844800
David A. Wardle11040970547
Agneta Oskarsson10676640524
Jack S. Remington10348138006
Hans Ellegren10234939437
Per A. Peterson10235635788
Malcolm J. Bennett9943937207
Gunnar E. Carlsson9846632638
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

92% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

92% related

University of Guelph
50.5K papers, 1.7M citations

88% related

United States Forest Service
21.8K papers, 959.1K citations

87% related

Agriculture and Agri-Food Canada
21.3K papers, 748.1K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023116
2022252
20212,311
20201,957
20191,787
20181,624