scispace - formally typeset
Search or ask a question
Institution

Swedish University of Agricultural Sciences

EducationUppsala, Sweden
About: Swedish University of Agricultural Sciences is a education organization based out in Uppsala, Sweden. It is known for research contribution in the topics: Population & Soil water. The organization has 13510 authors who have published 35241 publications receiving 1414458 citations. The organization is also known as: Sveriges Lantbruksuniversitet & SLU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver.
Abstract: Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.

514 citations

Journal ArticleDOI
31 Oct 2002-Nature
TL;DR: A N-fixing symbiosis between a cyanobacterium and the ubiquitous feather moss, Pleurozium schreberi (Bird) Mitt.
Abstract: Biological nitrogen (N) fixation is the primary source of N within natural ecosystems(1), yet the origin of boreal forest N has remained elusive. The boreal forests of Eurasia and North America lac ...

513 citations

Journal ArticleDOI
TL;DR: It is shown that overexpressing a key regulatory gene in the biosynthesis of the plant hormone gibberellin in hybrid aspen improves growth rate and biomass, and these transgenic trees have more numerous and longer xylem fibers than unmodified wild-type plants.
Abstract: In most tree-breeding programs worldwide, increasing the trees' growth rates and stem volumes and shortening their rotation times are important aims. Such trees would yield more biomass per unit area. Here we show that overexpressing a key regulatory gene in the biosynthesis of the plant hormone gibberellin (GA) in hybrid aspen (Populus tremula x P. tremuloides) improves growth rate and biomass. In addition, these transgenic trees have more numerous and longer xylem fibers than unmodified wild-type (wt) plants. Long fibers are desirable in the production of strong paper, but it has not as yet proved possible to influence this trait by traditional breeding techniques. We also show that GA has an antagonistic effect on root initiation, as the transgenic lines showed poorer rooting than the control plants when potted in soil. However, the negative effect on rooting efficiencies in the initial establishment of young plantlets in the growth chamber did not significantly affect root growth at later stages.

513 citations

Journal ArticleDOI
TL;DR: The ecological coherence of high bacterial taxa in the light of genome analyses is discussed and examples of niche differentiation between deeply diverging groups in terrestrial and aquatic systems are presented.
Abstract: The species is a fundamental unit of biological organization, but its relevance for Bacteria and Archaea is still hotly debated. Even more controversial is whether the deeper branches of the ribosomal RNA-derived phylogenetic tree, such as the phyla, have ecological importance. Here, we discuss the ecological coherence of high bacterial taxa in the light of genome analyses and present examples of niche differentiation between deeply diverging groups in terrestrial and aquatic systems. The ecological relevance of high bacterial taxa has implications for bacterial taxonomy, evolution and ecology.

510 citations

Journal ArticleDOI
TL;DR: The identification of genome-wide PIF5-binding sites during shade avoidance revealed that this bHLH transcription factor regulates the expression of a subset of previously identified SAS genes, and this study suggests that PIF4 and Pif5 regulate elongation growth by controlling directly the expression for auxin biosynthesis and auxin signaling components.
Abstract: Plant growth is strongly influenced by the presence of neighbors that compete for light resources. In response to vegetational shading shade-intolerant plants such as Arabidopsis display a suite of developmental responses known as the shade-avoidance syndrome (SAS). The phytochrome B (phyB) photoreceptor is the major light sensor to mediate this adaptive response. Control of the SAS occurs in part with phyB, which controls protein abundance of phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) directly. The shade-avoidance response also requires rapid biosynthesis of auxin and its transport to promote elongation growth. The identification of genome-wide PIF5-binding sites during shade avoidance revealed that this bHLH transcription factor regulates the expression of a subset of previously identified SAS genes. Moreover our study suggests that PIF4 and PIF5 regulate elongation growth by controlling directly the expression of genes that code for auxin biosynthesis and auxin signaling components.

505 citations


Authors

Showing all 13653 results

NameH-indexPapersCitations
Svante Pääbo14740784489
Lars Klareskog13169763281
Stephen Hillier129113883831
Carol V. Robinson12367051896
Jun Yu121117481186
Peter J. Anderson12096663635
David E. Clapham11938258360
Angela M. Gronenborn11356844800
David A. Wardle11040970547
Agneta Oskarsson10676640524
Jack S. Remington10348138006
Hans Ellegren10234939437
Per A. Peterson10235635788
Malcolm J. Bennett9943937207
Gunnar E. Carlsson9846632638
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

92% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

92% related

University of Guelph
50.5K papers, 1.7M citations

88% related

United States Forest Service
21.8K papers, 959.1K citations

87% related

Agriculture and Agri-Food Canada
21.3K papers, 748.1K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023116
2022252
20212,311
20201,957
20191,787
20181,624