scispace - formally typeset
Search or ask a question

Showing papers by "Swedish University of Agricultural Sciences published in 2011"


Journal ArticleDOI
15 Jul 2011-Science
TL;DR: This empirical work supports long-standing theory about the role of top-down forcing in ecosystems but also highlights the unanticipated impacts of trophic cascades on processes as diverse as the dynamics of disease, wildfire, carbon sequestration, invasive species, and biogeochemical cycles.
Abstract: Until recently, large apex consumers were ubiquitous across the globe and had been for millions of years. The loss of these animals may be humankind's most pervasive influence on nature. Although such losses are widely viewed as an ethical and aesthetic problem, recent research reveals extensive cascading effects of their disappearance in marine, terrestrial, and freshwater ecosystems worldwide. This empirical work supports long-standing theory about the role of top-down forcing in ecosystems but also highlights the unanticipated impacts of trophic cascades on processes as diverse as the dynamics of disease, wildfire, carbon sequestration, invasive species, and biogeochemical cycles. These findings emphasize the urgent need for interdisciplinary research to forecast the effects of trophic downgrading on process, function, and resilience in global ecosystems.

3,130 citations


Journal ArticleDOI
Henry N. Chapman1, Petra Fromme2, Anton Barty, Thomas A. White, Richard A. Kirian2, Andrew Aquila, Mark S. Hunter2, Joachim Schulz, Daniel P. DePonte, Uwe Weierstall2, R. Bruce Doak2, Filipe R. N. C. Maia3, Andrew V. Martin, Ilme Schlichting4, Lukas Lomb4, Nicola Coppola5, Robert L. Shoeman4, Sascha W. Epp4, Robert Hartmann, Daniel Rolles4, Artem Rudenko4, Lutz Foucar4, Nils Kimmel4, Georg Weidenspointner4, Peter Holl, Mengning Liang, Miriam Barthelmess, Carl Caleman, Sébastien Boutet6, Michael J. Bogan6, Jacek Krzywinski6, Christoph Bostedt6, Saša Bajt, Lars Gumprecht, Benedikt Rudek4, Benjamin Erk4, Carlo Schmidt4, André Hömke4, Christian Reich, Daniel Pietschner4, Lothar Strüder4, Günter Hauser4, H. Gorke7, Joachim Ullrich4, Sven Herrmann4, Gerhard Schaller4, Florian Schopper4, Heike Soltau, Kai-Uwe Kühnel4, Marc Messerschmidt6, John D. Bozek6, Stefan P. Hau-Riege8, Matthias Frank8, Christina Y. Hampton6, Raymond G. Sierra6, Dmitri Starodub6, Garth J. Williams6, Janos Hajdu3, Nicusor Timneanu3, M. Marvin Seibert6, M. Marvin Seibert3, Jakob Andreasson3, Andrea Rocker3, Olof Jönsson3, Martin Svenda3, Stephan Stern, Karol Nass1, Robert Andritschke4, Claus Dieter Schröter4, Faton Krasniqi4, Mario Bott4, Kevin Schmidt2, Xiaoyu Wang2, Ingo Grotjohann2, James M. Holton9, Thomas R. M. Barends4, Richard Neutze10, Stefano Marchesini9, Raimund Fromme2, Sebastian Schorb11, Daniela Rupp11, M. Adolph11, Tais Gorkhover11, Inger Andersson12, Helmut Hirsemann, Guillaume Potdevin, Heinz Graafsma, Björn Nilsson, John C. H. Spence2 
03 Feb 2011-Nature
TL;DR: This work offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage, by using pulses briefer than the timescale of most damage processes.
Abstract: X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded(1-3). It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source(4). We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes(5). More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (similar to 200 nm to 2 mm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes(6). This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

1,708 citations


Journal ArticleDOI
TL;DR: In this paper, a new conceptual model that explicitly identifies the processes controlling soil organic matter availability for decomposition and allows a more explicit description of the factors regulating OM decomposition under different circumstances is presented.
Abstract: The response of soil organic matter (OM) decomposition to increasing temperature is a critical aspect of ecosystem responses to global change The impacts of climate warming on decomposition dynamics have not been resolved due to apparently contradictory results from field and lab experiments, most of which has focused on labile carbon with short turnover times But the majority of total soil carbon stocks are comprised of organic carbon with turnover times of decades to centuries Understanding the response of these carbon pools to climate change is essential for forecasting longer-term changes in soil carbon storage Herein, we briefly synthesize information from recent studies that have been conducted using a wide variety of approaches In our effort to understand research to-date, we derive a new conceptual model that explicitly identifies the processes controlling soil OM availability for decomposition and allows a more explicit description of the factors regulating OM decomposition under different circumstances It explicitly defines resistance of soil OM to decomposition as being due either to its chemical conformation (quality )o r its physico-chemical protection from decomposition The former is embodied in the depolymerization process, the latter by adsorption/desorption and aggregate turnover We hypothesize a strong role for variation in temperature sensitivity as a function of reaction rates for both We conclude that important advances in understanding the temperature response of the processes that control substrate availability, depolymerization, microbial efficiency, and enzyme production will be needed to predict the fate of soil carbon stocks in a warmer world

1,175 citations


Journal ArticleDOI
TL;DR: Several new questions must now be addressed if this field is going to evolve into a predictive science that can help conserve and manage ecological processes in ecosystems, including questions about how primary producer diversity influences the efficiency of resource use and biomass production in ecosystems.
Abstract: Over the past several decades, a rapidly expanding field of research known as biodiversity and ecosystem functioning has begun to quantify how the world's biological diversity can, as an independent variable, control ecological processes that are both essential for, and fundamental to, the functioning of ecosystems. Research in this area has often been justified on grounds that (1) loss of biological diversity ranks among the most pronounced changes to the global environment and that (2) reductions in diversity, and corresponding changes in species composition, could alter important services that ecosystems provide to humanity (e.g., food production, pest/disease control, water purification). Here we review over two decades of experiments that have examined how species richness of primary producers influences the suite of ecological processes that are controlled by plants and algae in terrestrial, marine, and freshwater ecosystems. Using formal meta-analyses, we assess the balance of evidence for eight fundamental questions and corresponding hypotheses about the functional role of producer diversity in ecosystems. These include questions about how primary producer diversity influences the efficiency of resource use and biomass production in ecosystems, how primary producer diversity influences the transfer and recycling of biomass to other trophic groups in a food web, and the number of species and spatial /temporal scales at which diversity effects are most apparent. After summarizing the balance of evidence and stating our own confidence in the conclusions, we outline several new questions that must now be addressed if this field is going to evolve into a predictive science that can help conserve and manage ecological processes in ecosystems.

1,082 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reconcile two long-standing theories of stomatal conductance, i.e., the theoretical argument that stomata should act to minimize the amount of water used per unit carbon gained, and the empirical approach, which is most commonly used in vegetation models, is phenomenological, based on experimental observations of Stomatal behaviour in response to environmental conditions.
Abstract: Models of vegetation function are widely used to predict the effects of climate change on carbon, water and nutrient cycles of terrestrial ecosystems, and their feedbacks to climate. Stomatal conductance, the process that governs plant water use and carbon uptake, is fundamental to such models. In this paper, we reconcile two long-standing theories of stomatal conductance. The empirical approach, which is most commonly used in vegetation models, is phenomenological, based on experimental observations of stomatal behaviour in response to environmental conditions. The optimal approach is based on the theoretical argument that stomata should act to minimize the amount of water used per unit carbon gained. We reconcile these two approaches by showing that the theory of optimal stomatal conductance can be used to derive a model of stomatal conductance that is closely analogous to the empirical models. Consequently, we obtain a unified stomatal model which has a similar form to existing empirical models, but which now provides a theoretical interpretation for model parameter values. The key model parameter, g1 ,i s predicted to increase with growth temperature and with the marginal water cost of carbon gain. The new model is fitted to a range of datasets ranging from tropical to boreal trees. The parameter g1 is shown to vary with growth temperature, as predicted, and also with plant functional type. The model is shown to correctly capture responses of stomatal conductance to changing atmospheric CO2, and thus can be used to test for stomatal acclimation to elevated CO2. The reconciliation of the optimal and empirical approaches to modelling stomatal conductance is important for global change biology because it provides a simple theoretical framework for analyzing, and simulating, the coupling between carbon and water cycles under environmental change.

845 citations


Journal ArticleDOI
M. Marvin Seibert1, Tomas Ekeberg1, Filipe R. N. C. Maia1, Martin Svenda1, Jakob Andreasson1, Olof Jönsson1, Dusko Odic1, Bianca Iwan1, Andrea Rocker1, Daniel Westphal1, Max F. Hantke1, Daniel P. DePonte, Anton Barty, Joachim Schulz, Lars Gumprecht, Nicola Coppola, Andrew Aquila, Mengning Liang, Thomas A. White, Andrew V. Martin, Carl Caleman1, Stephan Stern2, Chantal Abergel3, Virginie Seltzer3, Jean-Michel Claverie3, Christoph Bostedt4, John D. Bozek4, Sébastien Boutet4, A. Miahnahri4, Marc Messerschmidt4, Jacek Krzywinski4, Garth J. Williams4, Keith O. Hodgson4, Michael J. Bogan4, Christina Y. Hampton4, Raymond G. Sierra4, D. Starodub4, Inger Andersson5, Sǎa Bajt, Miriam Barthelmess, John C. H. Spence6, Petra Fromme6, Uwe Weierstall6, Richard A. Kirian6, Mark S. Hunter6, R. Bruce Doak6, Stefano Marchesini7, Stefan P. Hau-Riege8, Matthias Frank8, Robert L. Shoeman9, Lukas Lomb9, Sascha W. Epp9, Robert Hartmann, Daniel Rolles9, Artem Rudenko9, Carlo Schmidt9, Lutz Foucar9, Nils Kimmel9, Peter Holl, Benedikt Rudek9, Benjamin Erk9, André Hömke9, Christian Reich, Daniel Pietschner9, Georg Weidenspointner9, Lothar Strüder9, Günter Hauser9, H. Gorke, Joachim Ullrich9, Ilme Schlichting9, Sven Herrmann9, Gerhard Schaller9, Florian Schopper9, Heike Soltau, Kai Uwe Kuhnel9, Robert Andritschke9, Claus Dieter Schröter9, Faton Krasniqi9, Mario Bott9, Sebastian Schorb10, Daniela Rupp10, M. Adolph10, Tais Gorkhover10, Helmut Hirsemann, Guillaume Potdevin, Heinz Graafsma, Björn Nilsson, Henry N. Chapman2, Janos Hajdu1 
03 Feb 2011-Nature
TL;DR: This work shows that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source.
Abstract: The start-up of the Linac Coherent Light Source (LCLS), the new femtosecond hard X-ray laser facility in Stanford, California, has brought high expectations of a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. Two papers in this issue of Nature present proof-of-concept experiments showing the LCLS in action. Chapman et al. tackle structure determination from nanocrystals of macromolecules that cannot be grown in large crystals. They obtain more than three million diffraction patterns from a stream of nanocrystals of the membrane protein photosystem I, and assemble a three-dimensional data set for this protein. Seibert et al. obtain images of a non-crystalline biological sample, mimivirus, by injecting a beam of cooled mimivirus particles into the X-ray beam. The start-up of the new femtosecond hard X-ray laser facility in Stanford, the Linac Coherent Light Source, has brought high expectations for a new era for biological imaging. The intense, ultrashort X-ray pulses allow diffraction imaging of small structures before radiation damage occurs. This new capability is tested for the problem of imaging a non-crystalline biological sample. Images of mimivirus are obtained, the largest known virus with a total diameter of about 0.75 micrometres, by injecting a beam of cooled mimivirus particles into the X-ray beam. The measurements indicate no damage during imaging and prove the concept of this imaging technique. X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions1,2,3,4. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma1. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval2. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source5. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.

838 citations


Journal ArticleDOI
TL;DR: Wild pollinators are relevant for crop productivity and stability even when honey bees are abundant, and policies to preserve and restore natural areas in agricultural landscapes should enhance levels and reliability of pollination services.
Abstract: Sustainable agricultural landscapes by definition provide high magnitude and stability of ecosystem services, biodiversity and crop productivity However, few studies have considered landscape effects on the stability of ecosystem services We tested whether isolation from florally diverse natural and semi-natural areas reduces the spatial and temporal stability of flower-visitor richness and pollination services in crop fields We synthesised data from 29 studies with contrasting biomes, crop species and pollinator communities Stability of flower-visitor richness, visitation rate (all insects except honey bees) and fruit set all decreased with distance from natural areas At 1 km from adjacent natural areas, spatial stability decreased by 25, 16 and 9% for richness, visitation and fruit set, respectively, while temporal stability decreased by 39% for richness and 13% for visitation Mean richness, visitation and fruit set also decreased with isolation, by 34, 27 and 16% at 1 km respectively In contrast, honey bee visitation did not change with isolation and represented > 25% of crop visits in 21 studies Therefore, wild pollinators are relevant for crop productivity and stability even when honey bees are abundant Policies to preserve and restore natural areas in agricultural landscapes should enhance levels and reliability of pollination services

751 citations


Journal ArticleDOI
Olle Terenius1, Alexie Papanicolaou2, Alexie Papanicolaou3, Jennie S. Garbutt4, Ioannis Eleftherianos5, Hanneke Huvenne6, Sriramana Kanginakudru7, Merete Albrechtsen8, Chunju An9, Jean Luc Aymeric10, Andrea Barthel11, Piotr Bebas12, Kavita Bitra13, Alejandra Bravo14, François Chevalier10, Derek Collinge15, Derek Collinge2, Cristina M. Crava16, Ruud A. de Maagd17, Bernard Duvic10, Martin A. Erlandson18, Martin A. Erlandson19, Ingrid Faye20, G Felfoldi21, Haruhiko Fujiwara22, Ryo Futahashi22, Ryo Futahashi23, Archana S. Gandhe7, H.S. Gatehouse24, L. N. Gatehouse24, Jadwiga M. Giebultowicz25, Isabel Gómez14, Cornelis J. P. Grimmelikhuijzen8, Astrid T. Groot11, Frank Hauser8, David G. Heckel11, Dwayne D. Hegedus19, Dwayne D. Hegedus18, Steven Hrycaj3, Lihua Huang2, J. Joe Hull26, Kostas Iatrou6, Masatoshi Iga6, Michael R. Kanost9, Joanna Kotwica12, Changyou Li2, Jianghong Li2, Jisheng Liu6, Magnus Lundmark8, Shogo Matsumoto4, Martina Meyering-Vos7, Peter J. Millichap4, Antónia Monteiro8, Nirotpal Mrinal7, Teruyuki Niimi9, Daniela Nowara8, Atsushi Ohnishi4, Vicencio Oostra27, Katsuhisa Ozaki, Maria P. Papakonstantinou6, Aleksandar Popadic3, Manchikatla Venkat Rajam12, Suzanne V. Saenko27, Robert M. Simpson24, Mario Soberón14, Michael R. Strand13, Shuichiro Tomita13, Umut Toprak18, Ping Wang2, Choon Wei Wee15, Steven Whyard28, Wenqing Zhang17, Javaregowda Nagaraju7, Richard H. ffrench-Constant3, Salvador Herrero17, Salvador Herrero16, Karl H.J. Gordon2, Luc Swevers6, Guy Smagghe6 
TL;DR: Despite a large variation in the data, trends that are found are that RNAi is particularly successful in the family Saturniidae and in genes involved in immunity and that gene expression in epidermal tissues seems to be most difficult to silence.

698 citations


Journal ArticleDOI
TL;DR: In the literature on gender and climate change, two themes predominate: women as vulnerable or virtuous in relation to the environment as mentioned in this paper and men as pollute more than women.
Abstract: In the limited literature on gender and climate change, two themes predominate – women as vulnerable or virtuous in relation to the environment. Two viewpoints become obvious: women in the South will be affected more by climate change than men in those countries and that men in the North pollute more than women. The debates are structured in specific ways in the North and the South and the discussion in the article focuses largely on examples from Sweden and India. The article traces the lineage of the arguments to the women, environment and development discussions, examining how they recur in new forms in climate debates. Questioning assumptions about women's vulnerability and virtuousness, it highlights how a focus on women's vulnerability or virtuousness can deflect attention from inequalities in decision-making. By reiterating statements about poor women in the South and the pro-environmental women of the North, these assumptions reinforce North–South biases. Generalizations about women's vulnerability and virtuousness can lead to an increase in women's responsibility without corresponding rewards. There is need to contextualise debates on climate change to enable action and to respond effectively to its adverse effects in particular places.

605 citations


Journal ArticleDOI
TL;DR: It is unknown how the extensive European agri-environmental budget for conservation on farmland contributes to the policy objectives to halt biodiversity decline, and new research directions are identified addressing this important knowledge gap.
Abstract: Biodiversity continues to decline, despite the implementation of international conservation conventions and measures. To counteract biodiversity loss, it is pivotal to know how conservation actions affect biodiversity trends. Focussing on European farmland species, we review what is known about the impact of conservation initiatives on biodiversity. We argue that the effects of conservation are a function of conservation-induced ecological contrast, agricultural land-use intensity and landscape context. We find that, to date, only a few studies have linked local conservation effects to national biodiversity trends. It is therefore unknown how the extensive European agri-environmental budget for conservation on farmland contributes to the policy objectives to halt biodiversity decline. Based on this review, we identify new research directions addressing this important knowledge gap.

578 citations


Journal ArticleDOI
05 Aug 2011-Science
TL;DR: Fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota through convergent evolution and divergence among fungal decomposers.
Abstract: Brown rot decay removes cellulose and hemicellulose from wood--residual lignin contributing up to 30% of forest soil carbon--and is derived from an ancestral white rot saprotrophy in which both lignin and cellulose are decomposed. Comparative and functional genomics of the "dry rot" fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition in S. lacrymans relative to the brown rot Postia placenta. Furthermore, fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above- and below-ground biota.

Journal ArticleDOI
TL;DR: It is suggested that the Millennium Development Goals need to be reframed in such a planetary stewardship context combined with a call for a new social contract on global sustainability.
Abstract: Humanity has emerged as a major force in the operation of the biosphere, with a significant imprint on the Earth System, challenging social–ecological resilience. This new situation calls for a fundamental shift in perspectives, world views, and institutions. Human development and progress must be reconnected to the capacity of the biosphere and essential ecosystem services to be sustained. Governance challenges include a highly interconnected and faster world, cascading social–ecological interactions and planetary boundaries that create vulnerabilities but also opportunities for social–ecological change and transformation. Tipping points and thresholds highlight the importance of understanding and managing resilience. New modes of flexible governance are emerging. A central challenge is to reconnect these efforts to the changing preconditions for societal development as active stewards of the Earth System. We suggest that the Millennium Development Goals need to be reframed in such a planetary stewardship context combined with a call for a new social contract on global sustainability. The ongoing mind shift in human relations with Earth and its boundaries provides exciting opportunities for societal development in collaboration with the biosphere—a global sustainability agenda for humanity.

Journal ArticleDOI
TL;DR: A classification based on morphological criteria is suggested of PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility.
Abstract: Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.

Journal ArticleDOI
TL;DR: In this paper, the authors revisited the long-term "Ultuna continuous soil organic matter field experiment" which started in 1956 at the Swedish University of Agricultural Sciences and used the equivalent soil mass concept for estimating changes in the topsoil carbon stocks in all 15 treatments.

Journal ArticleDOI
TL;DR: A model in which monoubiquitin-dependent internalization/sorting and turnover keep the plasma membrane pool of IRT1 low to ensure proper iron uptake and to prevent metal toxicity is suggested.
Abstract: Plants take up iron from the soil using the IRON-REGULATED TRANSPORTER 1 (IRT1) high-affinity iron transporter at the root surface. Sophisticated regulatory mechanisms allow plants to tightly control the levels of IRT1, ensuring optimal absorption of essential but toxic iron. Here, we demonstrate that overexpression of Arabidopsis thaliana IRT1 leads to constitutive IRT1 protein accumulation, metal overload, and oxidative stress. IRT1 is unexpectedly found in trans-Golgi network/early endosomes of root hair cells, and its levels and localization are unaffected by iron nutrition. Using pharmacological approaches, we show that IRT1 cycles to the plasma membrane to perform iron and metal uptake at the cell surface and is sent to the vacuole for proper turnover. We also prove that IRT1 is monoubiquitinated on several cytosol-exposed residues in vivo and that mutation of two putative monoubiquitination target residues in IRT1 triggers stabilization at the plasma membrane and leads to extreme lethality. Together, these data suggest a model in which monoubiquitin-dependent internalization/sorting and turnover keep the plasma membrane pool of IRT1 low to ensure proper iron uptake and to prevent metal toxicity. More generally, our work demonstrates the existence of monoubiquitin-dependent trafficking to lytic vacuoles in plants and points to proteasome-independent turnover of plasma membrane proteins.

Journal ArticleDOI
10 Jun 2011-Science
TL;DR: In this article, the effects of species gain and loss have been investigated. But the authors focus on traits associated with species loss, and much remains unknown about how traits that predispose species to extinction affect ecological processes.
Abstract: Ecosystems worldwide are losing some species and gaining others, resulting in an interchange of species that is having profound impacts on how these ecosystems function. However, research on the effects of species gains and losses has developed largely independently of one another. Recent conceptual advances regarding effects of species gain have arisen from studies that have unraveled the mechanistic basis of how invading species with novel traits alter biotic interactions and ecosystem processes. In contrast, studies on traits associated with species loss are fewer, and much remains unknown about how traits that predispose species to extinction affect ecological processes. Species gains and losses are both consequences and drivers of global change; thus, explicit integration of research on how both processes simultaneously affect ecosystem functioning is key to determining the response of the Earth system to current and future human activities.

Journal ArticleDOI
TL;DR: Sown wildflower strips are increasingly being established in European countries within agri‐environmental schemes to enhance biodiversity, especially in intensively used agricultural areas.
Abstract: Sown wildflower strips are increasingly being established in European countries within agri-environmental schemes to enhance biodiversity, especially in intensively used agricultural areas. 2. The regulations vary between countries regarding the seed mixture, intensity of management and period of time over which subsidies are given. Insects in particular are intended to benefit from these schemes. 3. This review treats studies of insect diversity and abundance in sown wildflower strips. Schemes on wildflower strips in several countries in Central and Northern Europe are compared. 4. In a significant majority of studies, sown wildflower strips support higher insect abundances and diversity than cropped habitats. In general, numbers and diversity also tend to be higher than in other margin types such as sown grass margins and natural regeneration, but pollen- and nectar-rich flower mixtures may outperform them. 5. Common species are the main beneficiaries of the establishment of wildflower strips, although some studies point out the presence of rare or declining insect spe-

Journal ArticleDOI
TL;DR: In this article, the Krycklan Catchment Study was used to study the role of hydrological mechanisms, connectivity and scaling for understanding the pattern and dynamics of surface water DOC across complex landscapes.
Abstract: We bring together three decades of research from a boreal catchment to facilitate an improved mechanistic understanding of surface water dissolved organic carbon (DOC) regulation across multiple scales. The Krycklan Catchment Study encompasses 15 monitored nested research catchments, ranging from 3 to 6900 ha in size, as well as a set of monitored transects of forested and wetland soils. We show that in small homogenous catchments, hydrological functioning provides a first order control on the temporal variability of stream water DOC. In larger, more heterogeneous catchments, stream water DOC dynamics are regulated by the combined effect of hydrological mechanisms and the proportion of major landscape elements, such as wetland and forested areas. As a consequence, streams with heterogeneous catchments undergo a temporal switch in the DOC source. In a typical boreal catchment covered by 10-20% wetlands, DOC originates predominantly from wetland sources during low flow conditions. During high flow, the major source of DOC is from forested areas of the catchment. We demonstrate that by connecting knowledge about DOC sources in the landscape with detailed hydrological process understanding, an improved representation of stream water DOC regulation can be provided. The purpose of this study is to serve as a framework for appreciating the role of regulating mechanisms, connectivity and scaling for understanding the pattern and dynamics of surface water DOC across complex landscapes. The results from this study suggest that the sensitivity of stream water DOC in the boreal landscape ultimately depends on changes within individual landscape elements, the proportion and connectivity of these affected landscape elements, and how these changes are propagated downstream.

Journal ArticleDOI
TL;DR: In this article, the authors map post-socialist farmland abandonment in Western Ukraine using Landsat images from 1986 to 2008, and identify spatial determinants of abandonment using a combination of best-subsets linear regression models and hierarchical partitioning.

Journal ArticleDOI
TL;DR: A high-quality draft genome sequence from an inbred line of B. xylophilus is presented, and the lack of proteins homologous to effectors from other plant parasitic nematodes confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage.
Abstract: Bursaphelenchus xylophilus is the nematode responsible for a devastating epidemic of pine wilt disease in Asia and Europe, and represents a recent, independent origin of plant parasitism in nematodes, ecologically and taxonomically distinct from other nematodes for which genomic data is available. As well as being an important pathogen, the B. xylophilus genome thus provides a unique opportunity to study the evolution and mechanism of plant parasitism. Here, we present a high-quality draft genome sequence from an inbred line of B. xylophilus, and use this to investigate the biological basis of its complex ecology which combines fungal feeding, plant parasitic and insect-associated stages. We focus particularly on putative parasitism genes as well as those linked to other key biological processes and demonstrate that B. xylophilus is well endowed with RNA interference effectors, peptidergic neurotransmitters (including the first description of ins genes in a parasite) stress response and developmental genes and has a contracted set of chemosensory receptors. B. xylophilus has the largest number of digestive proteases known for any nematode and displays expanded families of lysosome pathway genes, ABC transporters and cytochrome P450 pathway genes. This expansion in digestive and detoxification proteins may reflect the unusual diversity in foods it exploits and environments it encounters during its life cycle. In addition, B. xylophilus possesses a unique complement of plant cell wall modifying proteins acquired by horizontal gene transfer, underscoring the impact of this process on the evolution of plant parasitism by nematodes. Together with the lack of proteins homologous to effectors from other plant parasitic nematodes, this confirms the distinctive molecular basis of plant parasitism in the Bursaphelenchus lineage. The genome sequence of B. xylophilus adds to the diversity of genomic data for nematodes, and will be an important resource in understanding the biology of this unusual parasite.

Journal ArticleDOI
TL;DR: In this paper, the authors presented a general picture of agroclimatic conditions in western and central Europe (study area lays between 8.5°W−27°E and 37°63°N), which allows for a more general assessment of climate-change impacts.
Abstract: To date, projections of European crop yields under climate change have been based almost entirely on the outputs of crop-growth models. While this strategy can provide good estimates of the effects of climatic factors, soil conditions and management on crop yield, these models usually do not capture all of the important aspects related to crop management, or the relevant environmental factors. Moreover, crop-simulation studies often have severe limitations with respect to the number of crops covered or the spatial extent. The present study, based on agroclimatic indices, provides a general picture of agroclimatic conditions in western and central Europe (study area lays between 8.5°W–27°E and 37–63.5°N), which allows for a more general assessment of climate-change impacts. The results obtained from the analysis of data from 86 different sites were clustered according to an environmental stratification of Europe. The analysis was carried for the baseline (1971–2000) and future climate conditions (time horizons of 2030, 2050 and with a global temperature increase of 5 °C) based on outputs of three global circulation models. For many environmental zones, there were clear signs of deteriorating agroclimatic condition in terms of increased drought stress and shortening of the active growing season, which in some regions become increasingly squeezed between a cold winter and a hot summer. For most zones the projections show a marked need for adaptive measures to either increase soil water availability or drought resistance of crops. This study concludes that rainfed agriculture is likely to face more climate-related risks, although the analyzed agroclimatic indicators will probably remain at a level that should permit rainfed production. However, results suggests that there is a risk of increasing number of extremely unfavorable years in many climate zones, which might result in higher interannual yield variability and constitute a challenge for proper crop management.

Journal ArticleDOI
TL;DR: Results strongly suggest that the enzymatic reactions involved in indole-3-acetic acid (IAA) production via IPyA are different than those previously postulated, and a new and testable model for how IAA is produced in plants is needed.
Abstract: The effects of auxins on plant growth and development have been known for more than 100 years, yet our understanding of how plants synthesize this essential plant hormone is still fragmentary at best. Gene loss- and gain-of-function studies have conclusively implicated three gene families, CYTOCHROME P450 79B2/B3 (CYP79B2/B3), YUCCA (YUC), and TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1/TRYPTOPHAN AMINOTRANSFERASE-RELATED (TAA1/TAR), in the production of this hormone in the reference plant Arabidopsis thaliana. Each of these three gene families is believed to represent independent routes of auxin biosynthesis. Using a combination of pharmacological, genetic, and biochemical approaches, we examined the possible relationships between the auxin biosynthetic pathways defined by these three gene families. Our findings clearly indicate that TAA1/TARs and YUCs function in a common linear biosynthetic pathway that is genetically distinct from the CYP79B2/B3 route. In the redefined TAA1-YUC auxin biosynthetic pathway, TAA1/TARs are required for the production of indole-3-pyruvic acid (IPyA) from Trp, whereas YUCs are likely to function downstream. These results, together with the extensive genetic analysis of four pyruvate decarboxylases, the putative downstream components of the TAA1 pathway, strongly suggest that the enzymatic reactions involved in indole-3-acetic acid (IAA) production via IPyA are different than those previously postulated, and a new and testable model for how IAA is produced in plants is needed.

Journal ArticleDOI
TL;DR: A study was carried out to test the accuracy and consistency of veterinary pathologists, not specialists in hematopathology, in applying the World Health Organization (WHO) system of classification of canine lymphomas.
Abstract: A study was carried out to test the accuracy and consistency of veterinary pathologists, not specialists in hematopathology, in applying the World Health Organization (WHO) system of classification of canine lymphomas. This study represents an initiative of the ACVP Oncology Committee, and the classification has been endorsed by the World Small Animal Veterinary Association (WASVA). Tissue biopsies from cases of canine lymphoma were received from veterinary oncologists, and a study by pathologists given only signalment was carried out on 300 cases. Twenty pathologists reviewed these 300 cases with each required to choose a diagnosis from a list of 43 B and T cell lymphomas. Three of the 20 were hematopathologists who determined the consensus diagnosis for each case. The 17 who formed the test group were experienced but not specialists in hematopathology, and most were diplomates of the American or European Colleges of Veterinary Pathology. The overall accuracy of the 17 pathologists on the 300 cases was 83%. When the analysis was limited to the 6 most common diagnoses, containing 80% of all cases, accuracy rose to 87%. In a test of reproducibility enabled by reintroducing 5% of cases entered under a different identity, the overall agreement between the first and second diagnosis ranged from 40 to 87%. The statistical review included 43,000 data points for each of the 20 pathologists.

Journal ArticleDOI
David L. Hawksworth1, David L. Hawksworth2, Pedro W. Crous3, Scott A. Redhead, Don R. Reynolds4, Robert A. Samson3, Keith A. Seifert, John W. Taylor4, Michael J. Wingfield5, Özlem Abaci6, Catherine Aime7, Ahmet Asan8, Feng-Yan Bai, Z. Wilhelm de Beer5, Dominik Begerow9, Derya Berikten10, Teun Boekhout3, Peter K. Buchanan11, Treena I. Burgess12, Walter Buzina13, Lei Cai, Paul F. Cannon14, J. Leland Crane15, Ulrike Damm3, Heide Marie Daniel16, Anne D. van Diepeningen3, Irina S. Druzhinina17, Paul S. Dyer18, Ursula Eberhardt3, Jack W. Fell19, Jens Christian Frisvad20, David M. Geiser21, József Geml22, Chirlei Glienke23, Tom Gräfenhan24, Johannes Z. Groenewald3, Marizeth Groenewald3, Johannes de Gruyter25, Eveline Guého-Kellermann, Liang-Dong Guo, David S. Hibbett26, Seung-Beom Hong27, G. Sybren de Hoog2, Jos Houbraken3, Sabine M. Huhndorf28, Kevin D. Hyde, Ahmed Ismail3, Peter R. Johnston11, Duygu Göksay Kadaifciler29, Paul M. Kirk30, Urmas Kõljalg31, Cletus P. Kurtzman32, Paul Emile Lagneau, C. André Lévesque, Xingzhong Liu, Lorenzo Lombard3, Wieland Meyer15, Andrew N. Miller33, David W. Minter, Mohammad Javad Najafzadeh34, Lorelei L. Norvell, Svetlana Ozerskaya35, Rasime Ozic10, Shaun R. Pennycook11, Stephen W. Peterson32, Olga Vinnere Pettersson36, W. Quaedvlieg3, Vincent Robert3, Constantino Ruibal2, Johan Schnürer36, Hans Josef Schroers, Roger G. Shivas, Bernard Slippers5, Henk Spierenburg3, Masako Takashima, Evrim Taskin37, Marco Thines38, Ulf Thrane20, Alev Haliki Uztan6, Marcel van Raak25, János Varga39, Aida Vasco40, Gerard J.M. Verkley3, S.I.R. Videira3, Ronald P. de Vries3, Bevan S. Weir11, Neriman Yilmaz3, Andrey Yurkov9, Ning Zhang 
01 Jun 2011
TL;DR: The Amsterdam Declaration on Fungal Nomenclature recognizes the need for an orderly transitition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered.
Abstract: The Amsterdam Declaration on Fungal Nomenclature was agreed at an international symposium convened in Amsterdam on 19–20 April 2011 under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). The purpose of the symposium was to address the issue of whether or how the current system of naming pleomorphic fungi should be maintained or changed now that molecular data are routinely available. The issue is urgent as mycologists currently follow different practices, and no consensus was achieved by a Special Committee appointed in 2005 by the International Botanical Congress to advise on the problem. The Declaration recognizes the need for an orderly transitition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered. That is, meaning that priority should be given to the first described name, except where that is a younger name in general use when the first author to select a name of a pleomorphic monophyletic genus is to be followed, and suggests controversial cases are referred to a body, such as the ICTF, which will report to the Committee for Fungi. If appropriate, the ICTF could be mandated to promote the implementation of the Declaration. In addition, but not forming part of the Declaration, are reports of discussions held during the symposium on the governance of the nomenclature of fungi, and the naming of fungi known only from an environmental nucleic acid sequence in particular. Possible amendments to the Draft BioCode (2011) to allow for the needs of mycologists are suggested for further consideration, and a possible example of how a fungus only known from the environment might be described is presented.

Journal ArticleDOI
TL;DR: This review explores allelopathy in the context of ecosystem properties, and through its role in exotic invasions consider how evolution might affect the intensity and importance of allelopathic interactions.
Abstract: Plants can release chemicals into the environment that suppress the growth and establishment of other plants in their vicinity: a process known as 'allelopathy'. However, chemicals with allelopathic functions have other ecological roles, such as plant defense, nutrient chelation, and regulation of soil biota in ways that affect decomposition and soil fertility. These ecosystem-scale roles of allelopathic chemicals can augment, attenuate or modify their community-scale functions. In this review we explore allelopathy in the context of ecosystem properties, and through its role in exotic invasions consider how evolution might affect the intensity and importance of allelopathic interactions.

Journal ArticleDOI
TL;DR: A uniform statistical framework is proposed to separate migration from other movement behaviours, quantify migration parameters without the need for arbitrary cut-off criteria and test predictability across individuals, time and space and suggests it can help increase the understanding of the drivers of migration.
Abstract: Summary 1. Animal migration has long intrigued scientists and wildlife managers alike, yet migratory species face increasing challenges because of habitat fragmentation, climate change and over-exploitation. Central to the understanding migratory species is the objective discrimination between migratory and nonmigratory individuals in a given population, quantifying the timing, duration and distance of migration and the ability to predict migratory movements. 2. Here, we propose a uniform statistical framework to (i) separate migration from other movement behaviours, (ii) quantify migration parameters without the need for arbitrary cut-off criteria and (iii) test predictability across individuals, time and space. 3. We first validated our novel approach by simulating data based on established theoretical movement patterns. We then formulated the expected shapes of squared displacement patterns as nonlinear models for a suite of movement behaviours to test the ability of our method to distinguish between migratory movement and other movement types. 4. We then tested our approached empirically using 108 wild Global Positioning System (GPS)collared moose Alces alces in Scandinavia as a study system because they exhibit a wide range of movement behaviours, including resident, migrating and dispersing individuals, within the same population. Applying our approach showed that 87% and 67% of our Swedish and Norwegian subpopulations, respectively, can be classified as migratory. 5. Using nonlinear mixed effects models for all migratory individuals we showed that the distance, timing and duration of migration differed between the sexes and between years, with additional individual differences accounting for a large part of the variation in the distance of migration but not in the timing or duration. Overall, the model explained most of the variation (92%) and also had high predictive power for the same individuals over time (69%) as well as between study populations (74%). 6. The high predictive ability of the approach suggests that it can help increase our understanding of the drivers of migration and could provide key quantitative information for understanding and managing a broad range of migratory species.

Journal ArticleDOI
TL;DR: This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation.
Abstract: The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary between breeds, and we identify novel associations with both morphological and behavioral traits. We next scan the genome for signatures of selective sweeps in single breeds, characterized by long regions of reduced heterozygosity and fixation of extended haplotypes. These scans identify hundreds of regions, including 22 blocks of homozygosity longer than one megabase in certain breeds. Candidate selection loci are strongly enriched for developmental genes. We chose one highly differentiated region, associated with body size and ear morphology, and characterized it using high-throughput sequencing to provide a list of variants that may directly affect these traits. This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation. The many blocks of reduced haplotype diversity observed across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease.

Journal ArticleDOI
TL;DR: A proof of principle that the inability of some denitrifiers to synthesize the nitrous oxide reductase can influence the nature of the denitrification end products is provided, indicating that the extent of the reduction of N2O to N2 by the Denitrifying community can have a genetic basis.
Abstract: Analyses of the complete genomes of sequenced denitrifying bacteria revealed that approximately 1/3 have a truncated denitrification pathway, lacking the nosZ gene encoding the nitrous oxide reductase. We investigated whether the number of denitrifiers lacking the genetic ability to synthesize the nitrous oxide reductase in soils is important for the proportion of N2O emitted by denitrification. Serial dilutions of the denitrifying strain Agrobacterium tumefaciens C58 lacking the nosZ gene were inoculated into three different soils to modify the proportion of denitrifiers having the nitrous oxide reductase genes. The potential denitrification and N2O emissions increased when the size of inoculated C58 population in the soils was in the same range as the indigenous nosZ community. However, in two of the three soils, the increase in potential denitrification in inoculated microcosms compared with the noninoculated microcosms was higher than the increase in N2O emissions. This suggests that the indigenous denitrifier community was capable of acting as a sink for the N2O produced by A. tumefaciens. The relative amount of N2O emitted also increased in two soils with the number of inoculated C58 cells, establishing a direct causal link between the denitrifier community composition and potential N2O emissions by manipulating the proportion of denitrifiers having the nosZ gene. However, the number of denitrifiers which do not possess a nitrous oxide reductase might not be as important for N2O emissions in soils having a high N2O uptake capacity compared with those with lower. In conclusion, we provide a proof of principle that the inability of some denitrifiers to synthesize the nitrous oxide reductase can influence the nature of the denitrification end products, indicating that the extent of the reduction of N2O to N2 by the denitrifying community can have a genetic basis.

Journal ArticleDOI
09 Nov 2011-PLOS ONE
TL;DR: Soil geochemical data might be used to estimate baseline gene presence on local, regional and global scales within epidemiological risk studies related to AR transmission from the environment, and show that geochemical metal conditions innately influence the potential for AR in soil.
Abstract: The vast majority of antibiotic resistant genes (ARG) acquired by human pathogens have originated from the natural environment. Therefore, understanding factors that influence intrinsic levels of ARG in the environment could be epidemiologically significant. The selection for metal resistance often promotes AR in exposed organisms; however, the relationship between metal levels in nature and the intrinsic presence of ARG has not been fully assessed. Here, we quantified, using qPCR, the abundance of eleven ARG and compared their levels with geochemical conditions in randomly selected soils from a Scottish archive. Many ARG positively correlated with soil copper levels, with approximately half being highly significant (p<0.05); whereas chromium, nickel, lead, and iron also significantly correlated with specific ARG. Results show that geochemical metal conditions innately influence the potential for AR in soil. We suggest soil geochemical data might be used to estimate baseline gene presence on local, regional and global scales within epidemiological risk studies related to AR transmission from the environment.

Journal ArticleDOI
TL;DR: A correlation between decreasing mucus barrier and increasing clinical symptoms during onset of colitis is demonstrated and the ability of bacteria to regulate the thickness of the colonic mucus was demonstrated.
Abstract: The colonic mucus layer serves as an important barrier and prevents colonic bacteria from invading the mucosa and cause inflammation. The regulation of colonic mucus secretion is poorly understood. The aim of this study was to investigate the role of the mucus barrier in induction of colitis. Furthermore, regulation of mucus secretion by luminal bacterial products was studied. The colon of anesthetized Muc2−/−, Muc1−/−, wild-type (wt), and germ-free mice was exteriorized, the mucosal surface was visualized, and mucus thickness was measured with micropipettes. Colitis was induced by DSS (dextran sodium sulfate, 3%, in drinking water), and disease activity index (DAI) was assessed daily. The colonic mucosa of germ-free and conventionally housed mice was exposed to the bacterial products LPS (lipopolysaccharide) and PGN (peptidoglycan). After DSS induction of colitis, the thickness of the firmly adherent mucus layer was significantly thinner after 5 days and onward, which paralleled the increment of DAI. Muc2−/− mice, which lacked firmly adherent mucus, were predisposed to colitis, whereas Muc1−/− mice were protected with significantly lower DAI by DSS compared with wt mice. The mucus barrier increased in Muc1−/− mice in response to DSS, whereas significantly fewer T cells were recruited to the inflamed colon. Mice housed under germ-free conditions had an extremely thin adherent colonic mucus layer, but when exposed to bacterial products (PGN or LPS) the thickness of the adherent mucus layer was quickly restored to levels observed in conventionally housed mice. This study demonstrates a correlation between decreasing mucus barrier and increasing clinical symptoms during onset of colitis. Mice lacking colonic mucus (Muc2−/−) were hypersensitive to DSS-induced colitis, whereas Muc1−/− were protected, probably through the ability to increase the mucus barrier but also by decreased T cell recruitment to the afflicted site. Furthermore, the ability of bacteria to regulate the thickness of the colonic mucus was demonstrated.