scispace - formally typeset
Search or ask a question
Institution

Swedish University of Agricultural Sciences

EducationUppsala, Sweden
About: Swedish University of Agricultural Sciences is a education organization based out in Uppsala, Sweden. It is known for research contribution in the topics: Population & Soil water. The organization has 13510 authors who have published 35241 publications receiving 1414458 citations. The organization is also known as: Sveriges Lantbruksuniversitet & SLU.


Papers
More filters
Journal ArticleDOI
29 Oct 2004-Science
TL;DR: The results show that a PINOID-dependent binary switch controls PIN polarity and mediates changes in auxin flow to create local gradients for patterning processes.
Abstract: Polar transport-dependent local accumulation of auxin provides positional cues for multiple plant patterning processes. This directional auxin flow depends on the polar subcellular localization of the PIN auxin efflux regulators. Overexpression of the PINOID protein kinase induces a basal-to-apical shift in PIN localization, resulting in the loss of auxin gradients and strong defects in embryo and seedling roots. Conversely, pid loss of function induces an apical-to-basal shift in PIN1 polar targeting at the inflorescence apex, accompanied by defective organogenesis. Our results show that a PINOID-dependent binary switch controls PIN polarity and mediates changes in auxin flow to create local gradients for patterning processes.

756 citations

Journal ArticleDOI
09 Sep 2016-Science
TL;DR: This work identifies six biological mechanisms that commonly shape responses to climate change yet are too often missing from current predictive models and prioritize the types of information needed to inform each of these mechanisms, and suggests proxies for data that are missing or difficult to collect.
Abstract: BACKGROUND As global climate change accelerates, one of the most urgent tasks for the coming decades is to develop accurate predictions about biological responses to guide the effective protection of biodiversity. Predictive models in biology provide a means for scientists to project changes to species and ecosystems in response to disturbances such as climate change. Most current predictive models, however, exclude important biological mechanisms such as demography, dispersal, evolution, and species interactions. These biological mechanisms have been shown to be important in mediating past and present responses to climate change. Thus, current modeling efforts do not provide sufficiently accurate predictions. Despite the many complexities involved, biologists are rapidly developing tools that include the key biological processes needed to improve predictive accuracy. The biggest obstacle to applying these more realistic models is that the data needed to inform them are almost always missing. We suggest ways to fill this growing gap between model sophistication and information to predict and prevent the most damaging aspects of climate change for life on Earth. ADVANCES On the basis of empirical and theoretical evidence, we identify six biological mechanisms that commonly shape responses to climate change yet are too often missing from current predictive models: physiology; demography, life history, and phenology; species interactions; evolutionary potential and population differentiation; dispersal, colonization, and range dynamics; and responses to environmental variation. We prioritize the types of information needed to inform each of these mechanisms and suggest proxies for data that are missing or difficult to collect. We show that even for well-studied species, we often lack critical information that would be necessary to apply more realistic, mechanistic models. Consequently, data limitations likely override the potential gains in accuracy of more realistic models. Given the enormous challenge of collecting this detailed information on millions of species around the world, we highlight practical methods that promote the greatest gains in predictive accuracy. Trait-based approaches leverage sparse data to make more general inferences about unstudied species. Targeting species with high climate sensitivity and disproportionate ecological impact can yield important insights about future ecosystem change. Adaptive modeling schemes provide a means to target the most important data while simultaneously improving predictive accuracy. OUTLOOK Strategic collections of essential biological information will allow us to build generalizable insights that inform our broader ability to anticipate species’ responses to climate change and other human-caused disturbances. By increasing accuracy and making uncertainties explicit, scientists can deliver improved projections for biodiversity under climate change together with characterizations of uncertainty to support more informed decisions by policymakers and land managers. Toward this end, a globally coordinated effort to fill data gaps in advance of the growing climate-fueled biodiversity crisis offers substantial advantages in efficiency, coverage, and accuracy. Biologists can take advantage of the lessons learned from the Intergovernmental Panel on Climate Change’s development, coordination, and integration of climate change projections. Climate and weather projections were greatly improved by incorporating important mechanisms and testing predictions against global weather station data. Biology can do the same. We need to adopt this meteorological approach to predicting biological responses to climate change to enhance our ability to mitigate future changes to global biodiversity and the services it provides to humans.

755 citations

Journal ArticleDOI
TL;DR: The current knowledge of mast cell secretory granules is discussed, which shows that mast cell granule proteases account for many of the protective and detrimental effects of mast cells in various inflammatory settings.
Abstract: Mast cells are important effector cells of the immune system and recent studies show that they have immunomodulatory roles in diverse processes in both health and disease. Mast cells are distinguished by their high content of electron-dense secretory granules, which are filled with large amounts of preformed and pre-activated immunomodulatory compounds. When appropriately activated, mast cells undergo degranulation, a process by which these preformed granule compounds are rapidly released into the surroundings. In many cases, the effects that mast cells have on an immune response are closely associated with the biological actions of the granule compounds that they release, as exemplified by the recent studies showing that mast cell granule proteases account for many of the protective and detrimental effects of mast cells in various inflammatory settings. In this Review, we discuss the current knowledge of mast cell secretory granules.

754 citations

Journal ArticleDOI
TL;DR: A closer examination of the literature reveals that only few studies have rigorously tested the hypotheses relating to progressive appearance or disappearance of phenotypes, age-related improvements of competence, and optimization of reproductive effort.
Abstract: It is well known that reproductive performance improves with age in birds. Many hypotheses, involving factors such as differential survival, delayed breeding, breeding experience, foraging ability and reproductive effort, have been proposed to explain this pattern. Although these hypotheses are not mutually exclusive, they can be classified in three major groups relating to progressive appearance or disappearance of phenotypes, age-related improvements of competence, and optimization of reproductive effort. However, a closer examination of the literature reveals that only few studies have rigorously tested the hypotheses. Future work should focus on carefully designed tests that critically investigate the hypotheses.

753 citations

Journal ArticleDOI
TL;DR: Wild pollinators are relevant for crop productivity and stability even when honey bees are abundant, and policies to preserve and restore natural areas in agricultural landscapes should enhance levels and reliability of pollination services.
Abstract: Sustainable agricultural landscapes by definition provide high magnitude and stability of ecosystem services, biodiversity and crop productivity However, few studies have considered landscape effects on the stability of ecosystem services We tested whether isolation from florally diverse natural and semi-natural areas reduces the spatial and temporal stability of flower-visitor richness and pollination services in crop fields We synthesised data from 29 studies with contrasting biomes, crop species and pollinator communities Stability of flower-visitor richness, visitation rate (all insects except honey bees) and fruit set all decreased with distance from natural areas At 1 km from adjacent natural areas, spatial stability decreased by 25, 16 and 9% for richness, visitation and fruit set, respectively, while temporal stability decreased by 39% for richness and 13% for visitation Mean richness, visitation and fruit set also decreased with isolation, by 34, 27 and 16% at 1 km respectively In contrast, honey bee visitation did not change with isolation and represented > 25% of crop visits in 21 studies Therefore, wild pollinators are relevant for crop productivity and stability even when honey bees are abundant Policies to preserve and restore natural areas in agricultural landscapes should enhance levels and reliability of pollination services

751 citations


Authors

Showing all 13653 results

NameH-indexPapersCitations
Svante Pääbo14740784489
Lars Klareskog13169763281
Stephen Hillier129113883831
Carol V. Robinson12367051896
Jun Yu121117481186
Peter J. Anderson12096663635
David E. Clapham11938258360
Angela M. Gronenborn11356844800
David A. Wardle11040970547
Agneta Oskarsson10676640524
Jack S. Remington10348138006
Hans Ellegren10234939437
Per A. Peterson10235635788
Malcolm J. Bennett9943937207
Gunnar E. Carlsson9846632638
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

92% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

92% related

University of Guelph
50.5K papers, 1.7M citations

88% related

United States Forest Service
21.8K papers, 959.1K citations

87% related

Agriculture and Agri-Food Canada
21.3K papers, 748.1K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023116
2022252
20212,311
20201,957
20191,787
20181,624