scispace - formally typeset
Search or ask a question
Institution

Swedish University of Agricultural Sciences

EducationUppsala, Sweden
About: Swedish University of Agricultural Sciences is a education organization based out in Uppsala, Sweden. It is known for research contribution in the topics: Population & Soil water. The organization has 13510 authors who have published 35241 publications receiving 1414458 citations. The organization is also known as: Sveriges Lantbruksuniversitet & SLU.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compare methods to determine the degree of compactness (DC) and limits of field bulk density for plant growth under no-tillage in subtropical soils.
Abstract: The concept of degree of compactness (DC), referred to as field bulk density (BD) as a percentage of a reference bulk density (BD ref ), was developed to characterize compactness of soil frequently disturbed, but for undisturbed soil such as under no-tillage critical degree of compactness values have not been tested. The objective of this study was to compare methods to determine BD ref and limits of DC and BD for plant growth under no-tillage in subtropical soils. Data from the literature and other databases were used to establish relationships between BD and clay or clay plus silt content, and between DC and macroporosity and yield of crops under no-tillage in subtropical Brazil. Data of BD ref reached by the soil Proctor test on disturbed soil samples, by uniaxial compression with loads of 200 kPa on disturbed and undisturbed soil samples, and 400, 800 and 1600 kPa on undisturbed soil samples, were used. Also, comparisons were made with critical bulk density based on the least limiting water range (BDc LLWR) and on observed root and/or yield restriction in the field (BDc Rest). Using vertical uniaxial compression with a load of 200 kPa on disturbed or undisturbed samples generates low BD ref and high DC-values. The standard Proctor test generates higher BD ref -values, which are similar to those in a uniaxial test with a load of 1600 kPa for soils with low clay content but lower for soils with high clay content. The BDc LLWR does not necessarily restrict root growth or crop yield under no-tillage, since field investigations led to higher BDc Rest-values. A uniaxial load greater than 800 kPa is promising to determine BD ref for no-tillage soils. The BD ref is highly correlated to the clay content and thus pedotransfer functions may be established to estimate the former based on the latter. Soil ecological properties are affected before compaction restricts plant growth and yield. The DC is an efficient parameter to identify soil compaction affecting crops. The effect of compaction on ecological properties must also be further considered.

443 citations

Journal ArticleDOI
01 Aug 2010-Ecology
TL;DR: The results suggest that stabilizing effects of diversity on community productivity through population asynchrony and overyielding appear to be general in grassland ecosystems.
Abstract: Insurance effects of biodiversity can stabilize the functioning of multispecies ecosystems against environmental variability when differential species' responses lead to asynchronous population dynamics. When responses are not perfectly positively correlated, declines in some populations are compensated by increases in others, smoothing variability in ecosystem productivity. This variance reduction effect of biodiversity is analogous to the risk-spreading benefits of diverse investment portfolios in financial markets. We use data from the BIODEPTH network of grassland biodiversity experiments to perform a general test for stabilizing effects of plant diversity on the temporal variability of individual species, functional groups, and aggregate communities. We tested three potential mechanisms: reduction of temporal variability through population asynchrony; enhancement of long-term average performance through positive selection effects; and increases in the temporal mean due to overyielding. Our results support a stabilizing effect of diversity on the temporal variability of grassland aboveground annual net primary production through two mechanisms. Two-species communities with greater population asynchrony were more stable in their average production over time due to compensatory fluctuations. Overyielding also stabilized productivity by increasing levels of average biomass production relative to temporal variability. However, there was no evidence for a performance-enhancing effect on the temporal mean through positive selection effects. In combination with previous work, our results suggest that stabilizing effects of diversity on community productivity through population asynchrony and overyielding appear to be general in grassland ecosystems.

443 citations

Journal ArticleDOI
TL;DR: An overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring is provided in order to identify future directions, applications, developments, and challenges.
Abstract: Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small- and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, postprocessing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challenges.

442 citations

Journal ArticleDOI
TL;DR: The overall performance of the three test species, Trifolium pratense, Dactylis glomerata, Plantago lanceolata, was generally highest for plants replanted at their home site and declined with increasing transplanting distance.
Abstract: Geographic variation can lead to the evolution of different local varieties, even in widespread forage plants. We investigated the performance of common forage plants in relation to their genetic diversity and local adaptation at a continental scale using reciprocal transplants at eight field sites across Europe over a 2-year period. The overall performance of the three test species, Trifolium pratense, Dactylis glomerata, Plantago lanceolata, was generally highest for plants replanted at their home site and declined with increasing transplanting distance. The three species differed in the fitness components responsible for the increased overall performance and selection advantage at home sites. In addition to the effects of local adaptation, the majority of measured traits in all three species also showed ecotypic variation. However, no single ecotype of any species was able to outperform the locally adapted strains and do best at all sites, highlighting the importance of maintaining these plant genetic resources.

442 citations

Journal ArticleDOI
TL;DR: Because of the continuous emission of PFASs, further information about their ecotoxicological potential among multiple generations, species interactions, and mixture toxicity seems fundamental to reliably assess the risks forPFASs to affect ecosystem structure and function in the aquatic environment.
Abstract: Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are distributed ubiquitously in the aquatic environment, which raises concern for the flora and fauna in hydrosystems. The present critical review focuses on the fate and adverse effects of PFASs in the aquatic environment. The PFASs are continuously emitted into the environment from point and nonpoint sources such as sewage treatment plants and atmospheric deposition, respectively. Although concentrations of single substances may be too low to cause adverse effects, their mixtures can be of significant environmental concern. The production of C8 -based PFASs (i.e., perfluorooctane sulfonate [PFOS] and perfluorooctanoate [PFOA]) is largely phased out; however, the emissions of other PFASs, in particular short-chain PFASs and PFAS precursors, are increasing. The PFAS precursors can finally degrade to persistent degradation products, which are, in particular, perfluoroalkane sulfonates (PFSAs) and perfluoroalkyl carboxylates (PFCAs). In the environment, PFSAs and PFCAs are subject to partitioning processes, whereby short-chain PFSAs and PFCAs are mainly distributed in the water phase, whereas long-chain PFSAs and PFCAs tend to bind to particles and have a substantial bioaccumulation potential. However, there are fundamental knowledge gaps about the interactive toxicity of PFAS precursors and their persistent degradation products but also interactions with other natural and anthropogenic stressors. Moreover, because of the continuous emission of PFASs, further information about their ecotoxicological potential among multiple generations, species interactions, and mixture toxicity seems fundamental to reliably assess the risks for PFASs to affect ecosystem structure and function in the aquatic environment.

440 citations


Authors

Showing all 13653 results

NameH-indexPapersCitations
Svante Pääbo14740784489
Lars Klareskog13169763281
Stephen Hillier129113883831
Carol V. Robinson12367051896
Jun Yu121117481186
Peter J. Anderson12096663635
David E. Clapham11938258360
Angela M. Gronenborn11356844800
David A. Wardle11040970547
Agneta Oskarsson10676640524
Jack S. Remington10348138006
Hans Ellegren10234939437
Per A. Peterson10235635788
Malcolm J. Bennett9943937207
Gunnar E. Carlsson9846632638
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

92% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

92% related

University of Guelph
50.5K papers, 1.7M citations

88% related

United States Forest Service
21.8K papers, 959.1K citations

87% related

Agriculture and Agri-Food Canada
21.3K papers, 748.1K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023116
2022252
20212,311
20201,957
20191,787
20181,624